\left\{ \begin{array} { l } { x + y - z - 2 r = 0 } \\ { x + 7 y - 5 z - 2 r = 0 } \\ { 2 x - y + 2 z + t = 0 } \end{array} \right.
Solve for x, y, z
x=\frac{4r}{3}-\frac{t}{6}
y=\frac{-4r-t}{3}
z=-\frac{t}{2}-2r
Share
Copied to clipboard
x=-y+z+2r
Solve x+y-z-2r=0 for x.
-y+z+2r+7y-5z-2r=0 2\left(-y+z+2r\right)-y+2z+t=0
Substitute -y+z+2r for x in the second and third equation.
y=\frac{2}{3}z z=\frac{3}{4}y-r-\frac{1}{4}t
Solve these equations for y and z respectively.
z=\frac{3}{4}\times \frac{2}{3}z-r-\frac{1}{4}t
Substitute \frac{2}{3}z for y in the equation z=\frac{3}{4}y-r-\frac{1}{4}t.
z=-2r-\frac{1}{2}t
Solve z=\frac{3}{4}\times \frac{2}{3}z-r-\frac{1}{4}t for z.
y=\frac{2}{3}\left(-2r-\frac{1}{2}t\right)
Substitute -2r-\frac{1}{2}t for z in the equation y=\frac{2}{3}z.
y=-\frac{4}{3}r-\frac{1}{3}t
Calculate y from y=\frac{2}{3}\left(-2r-\frac{1}{2}t\right).
x=-\left(-\frac{4}{3}r-\frac{1}{3}t\right)-2r-\frac{1}{2}t+2r
Substitute -\frac{4}{3}r-\frac{1}{3}t for y and -2r-\frac{1}{2}t for z in the equation x=-y+z+2r.
x=\frac{4}{3}r-\frac{1}{6}t
Calculate x from x=-\left(-\frac{4}{3}r-\frac{1}{3}t\right)-2r-\frac{1}{2}t+2r.
x=\frac{4}{3}r-\frac{1}{6}t y=-\frac{4}{3}r-\frac{1}{3}t z=-2r-\frac{1}{2}t
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}