\left\{ \begin{array} { l } { x + y = 850 } \\ { 3 \times 16 x = 2 \times 10 y ( 2 ) } \end{array} \right.
Solve for x, y
x = \frac{4250}{11} = 386\frac{4}{11} \approx 386.363636364
y = \frac{5100}{11} = 463\frac{7}{11} \approx 463.636363636
Graph
Share
Copied to clipboard
3\times 16x-2\times 10y\times 2=0
Consider the second equation. Subtract 2\times 10y\times 2 from both sides.
3\times 16x-2\left(2\times 10\right)y=0
Multiply -1 and 2 to get -2.
x+y=850,48x-40y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=850
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+850
Subtract y from both sides of the equation.
48\left(-y+850\right)-40y=0
Substitute -y+850 for x in the other equation, 48x-40y=0.
-48y+40800-40y=0
Multiply 48 times -y+850.
-88y+40800=0
Add -48y to -40y.
-88y=-40800
Subtract 40800 from both sides of the equation.
y=\frac{5100}{11}
Divide both sides by -88.
x=-\frac{5100}{11}+850
Substitute \frac{5100}{11} for y in x=-y+850. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{4250}{11}
Add 850 to -\frac{5100}{11}.
x=\frac{4250}{11},y=\frac{5100}{11}
The system is now solved.
3\times 16x-2\times 10y\times 2=0
Consider the second equation. Subtract 2\times 10y\times 2 from both sides.
3\times 16x-2\left(2\times 10\right)y=0
Multiply -1 and 2 to get -2.
x+y=850,48x-40y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\48&-40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}850\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\48&-40\end{matrix}\right))\left(\begin{matrix}1&1\\48&-40\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\48&-40\end{matrix}\right))\left(\begin{matrix}850\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\48&-40\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\48&-40\end{matrix}\right))\left(\begin{matrix}850\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\48&-40\end{matrix}\right))\left(\begin{matrix}850\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{40}{-40-48}&-\frac{1}{-40-48}\\-\frac{48}{-40-48}&\frac{1}{-40-48}\end{matrix}\right)\left(\begin{matrix}850\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&\frac{1}{88}\\\frac{6}{11}&-\frac{1}{88}\end{matrix}\right)\left(\begin{matrix}850\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\times 850\\\frac{6}{11}\times 850\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4250}{11}\\\frac{5100}{11}\end{matrix}\right)
Do the arithmetic.
x=\frac{4250}{11},y=\frac{5100}{11}
Extract the matrix elements x and y.
3\times 16x-2\times 10y\times 2=0
Consider the second equation. Subtract 2\times 10y\times 2 from both sides.
3\times 16x-2\left(2\times 10\right)y=0
Multiply -1 and 2 to get -2.
x+y=850,48x-40y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
48x+48y=48\times 850,48x-40y=0
To make x and 48x equal, multiply all terms on each side of the first equation by 48 and all terms on each side of the second by 1.
48x+48y=40800,48x-40y=0
Simplify.
48x-48x+48y+40y=40800
Subtract 48x-40y=0 from 48x+48y=40800 by subtracting like terms on each side of the equal sign.
48y+40y=40800
Add 48x to -48x. Terms 48x and -48x cancel out, leaving an equation with only one variable that can be solved.
88y=40800
Add 48y to 40y.
y=\frac{5100}{11}
Divide both sides by 88.
48x-40\times \frac{5100}{11}=0
Substitute \frac{5100}{11} for y in 48x-40y=0. Because the resulting equation contains only one variable, you can solve for x directly.
48x-\frac{204000}{11}=0
Multiply -40 times \frac{5100}{11}.
48x=\frac{204000}{11}
Add \frac{204000}{11} to both sides of the equation.
x=\frac{4250}{11}
Divide both sides by 48.
x=\frac{4250}{11},y=\frac{5100}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}