\left\{ \begin{array} { l } { x + y = 660 } \\ { 0,01 x + 0,02 y = 750 } \end{array} \right.
Solve for x, y
x=-73680
y=74340
Graph
Share
Copied to clipboard
x+y=660;0,01x+0,02y=750
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=660
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+660
Subtract y from both sides of the equation.
0,01\left(-y+660\right)+0,02y=750
Substitute -y+660 for x in the other equation, 0,01x+0,02y=750.
-0,01y+6,6+0,02y=750
Multiply 0,01 times -y+660.
0,01y+6,6=750
Add -\frac{y}{100} to \frac{y}{50}.
0,01y=743,4
Subtract 6,6 from both sides of the equation.
y=74340
Multiply both sides by 100.
x=-74340+660
Substitute 74340 for y in x=-y+660. Because the resulting equation contains only one variable, you can solve for x directly.
x=-73680
Add 660 to -74340.
x=-73680;y=74340
The system is now solved.
x+y=660;0,01x+0,02y=750
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0,01&0,02\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}660\\750\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0,01&0,02\end{matrix}\right))\left(\begin{matrix}1&1\\0,01&0,02\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0,01&0,02\end{matrix}\right))\left(\begin{matrix}660\\750\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0,01&0,02\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0,01&0,02\end{matrix}\right))\left(\begin{matrix}660\\750\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0,01&0,02\end{matrix}\right))\left(\begin{matrix}660\\750\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0,02}{0,02-0,01}&-\frac{1}{0,02-0,01}\\-\frac{0,01}{0,02-0,01}&\frac{1}{0,02-0,01}\end{matrix}\right)\left(\begin{matrix}660\\750\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-100\\-1&100\end{matrix}\right)\left(\begin{matrix}660\\750\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 660-100\times 750\\-660+100\times 750\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-73680\\74340\end{matrix}\right)
Do the arithmetic.
x=-73680;y=74340
Extract the matrix elements x and y.
x+y=660;0,01x+0,02y=750
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0,01x+0,01y=0,01\times 660;0,01x+0,02y=750
To make x and \frac{x}{100} equal, multiply all terms on each side of the first equation by 0,01 and all terms on each side of the second by 1.
0,01x+0,01y=6,6;0,01x+0,02y=750
Simplify.
0,01x-0,01x+0,01y-0,02y=6,6-750
Subtract 0,01x+0,02y=750 from 0,01x+0,01y=6,6 by subtracting like terms on each side of the equal sign.
0,01y-0,02y=6,6-750
Add \frac{x}{100} to -\frac{x}{100}. Terms \frac{x}{100} and -\frac{x}{100} cancel out, leaving an equation with only one variable that can be solved.
-0,01y=6,6-750
Add \frac{y}{100} to -\frac{y}{50}.
-0,01y=-743,4
Add 6,6 to -750.
y=74340
Multiply both sides by -100.
0,01x+0,02\times 74340=750
Substitute 74340 for y in 0,01x+0,02y=750. Because the resulting equation contains only one variable, you can solve for x directly.
0,01x+1486,8=750
Multiply 0,02 times 74340.
0,01x=-736,8
Subtract 1486,8 from both sides of the equation.
x=-73680
Multiply both sides by 100.
x=-73680;y=74340
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}