\left\{ \begin{array} { l } { x + y = 60 } \\ { 2 x + 3 y = 155 } \end{array} \right.
Solve for x, y
x=25
y=35
Graph
Share
Copied to clipboard
x+y=60,2x+3y=155
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=60
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+60
Subtract y from both sides of the equation.
2\left(-y+60\right)+3y=155
Substitute -y+60 for x in the other equation, 2x+3y=155.
-2y+120+3y=155
Multiply 2 times -y+60.
y+120=155
Add -2y to 3y.
y=35
Subtract 120 from both sides of the equation.
x=-35+60
Substitute 35 for y in x=-y+60. Because the resulting equation contains only one variable, you can solve for x directly.
x=25
Add 60 to -35.
x=25,y=35
The system is now solved.
x+y=60,2x+3y=155
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\155\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}60\\155\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}60\\155\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}60\\155\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}60\\155\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}60\\155\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 60-155\\-2\times 60+155\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\35\end{matrix}\right)
Do the arithmetic.
x=25,y=35
Extract the matrix elements x and y.
x+y=60,2x+3y=155
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2y=2\times 60,2x+3y=155
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x+2y=120,2x+3y=155
Simplify.
2x-2x+2y-3y=120-155
Subtract 2x+3y=155 from 2x+2y=120 by subtracting like terms on each side of the equal sign.
2y-3y=120-155
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-y=120-155
Add 2y to -3y.
-y=-35
Add 120 to -155.
y=35
Divide both sides by -1.
2x+3\times 35=155
Substitute 35 for y in 2x+3y=155. Because the resulting equation contains only one variable, you can solve for x directly.
2x+105=155
Multiply 3 times 35.
2x=50
Subtract 105 from both sides of the equation.
x=25
Divide both sides by 2.
x=25,y=35
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}