\left\{ \begin{array} { l } { x + y = 57 } \\ { \frac { x } { 0.8 } + \frac { y } { 0.9 } = 470 } \end{array} \right.
Solve for x, y
x=2928
y=-2871
Graph
Share
Copied to clipboard
x+y=57,\frac{5}{4}x+\frac{10}{9}y=470
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=57
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+57
Subtract y from both sides of the equation.
\frac{5}{4}\left(-y+57\right)+\frac{10}{9}y=470
Substitute -y+57 for x in the other equation, \frac{5}{4}x+\frac{10}{9}y=470.
-\frac{5}{4}y+\frac{285}{4}+\frac{10}{9}y=470
Multiply \frac{5}{4} times -y+57.
-\frac{5}{36}y+\frac{285}{4}=470
Add -\frac{5y}{4} to \frac{10y}{9}.
-\frac{5}{36}y=\frac{1595}{4}
Subtract \frac{285}{4} from both sides of the equation.
y=-2871
Divide both sides of the equation by -\frac{5}{36}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\left(-2871\right)+57
Substitute -2871 for y in x=-y+57. Because the resulting equation contains only one variable, you can solve for x directly.
x=2871+57
Multiply -1 times -2871.
x=2928
Add 57 to 2871.
x=2928,y=-2871
The system is now solved.
x+y=57,\frac{5}{4}x+\frac{10}{9}y=470
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{5}{4}&\frac{10}{9}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}57\\470\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{5}{4}&\frac{10}{9}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{5}{4}&\frac{10}{9}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{5}{4}&\frac{10}{9}\end{matrix}\right))\left(\begin{matrix}57\\470\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{5}{4}&\frac{10}{9}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{5}{4}&\frac{10}{9}\end{matrix}\right))\left(\begin{matrix}57\\470\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{5}{4}&\frac{10}{9}\end{matrix}\right))\left(\begin{matrix}57\\470\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{10}{9}}{\frac{10}{9}-\frac{5}{4}}&-\frac{1}{\frac{10}{9}-\frac{5}{4}}\\-\frac{\frac{5}{4}}{\frac{10}{9}-\frac{5}{4}}&\frac{1}{\frac{10}{9}-\frac{5}{4}}\end{matrix}\right)\left(\begin{matrix}57\\470\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8&\frac{36}{5}\\9&-\frac{36}{5}\end{matrix}\right)\left(\begin{matrix}57\\470\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\times 57+\frac{36}{5}\times 470\\9\times 57-\frac{36}{5}\times 470\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2928\\-2871\end{matrix}\right)
Do the arithmetic.
x=2928,y=-2871
Extract the matrix elements x and y.
x+y=57,\frac{5}{4}x+\frac{10}{9}y=470
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{5}{4}x+\frac{5}{4}y=\frac{5}{4}\times 57,\frac{5}{4}x+\frac{10}{9}y=470
To make x and \frac{5x}{4} equal, multiply all terms on each side of the first equation by \frac{5}{4} and all terms on each side of the second by 1.
\frac{5}{4}x+\frac{5}{4}y=\frac{285}{4},\frac{5}{4}x+\frac{10}{9}y=470
Simplify.
\frac{5}{4}x-\frac{5}{4}x+\frac{5}{4}y-\frac{10}{9}y=\frac{285}{4}-470
Subtract \frac{5}{4}x+\frac{10}{9}y=470 from \frac{5}{4}x+\frac{5}{4}y=\frac{285}{4} by subtracting like terms on each side of the equal sign.
\frac{5}{4}y-\frac{10}{9}y=\frac{285}{4}-470
Add \frac{5x}{4} to -\frac{5x}{4}. Terms \frac{5x}{4} and -\frac{5x}{4} cancel out, leaving an equation with only one variable that can be solved.
\frac{5}{36}y=\frac{285}{4}-470
Add \frac{5y}{4} to -\frac{10y}{9}.
\frac{5}{36}y=-\frac{1595}{4}
Add \frac{285}{4} to -470.
y=-2871
Divide both sides of the equation by \frac{5}{36}, which is the same as multiplying both sides by the reciprocal of the fraction.
\frac{5}{4}x+\frac{10}{9}\left(-2871\right)=470
Substitute -2871 for y in \frac{5}{4}x+\frac{10}{9}y=470. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{5}{4}x-3190=470
Multiply \frac{10}{9} times -2871.
\frac{5}{4}x=3660
Add 3190 to both sides of the equation.
x=2928
Divide both sides of the equation by \frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=2928,y=-2871
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}