\left\{ \begin{array} { l } { x + y = 54,4 } \\ { 25 x + 18 y = 48 \cdot 25 \cdot 9 } \end{array} \right.
Solve for x, y
x=\frac{49104}{35}\approx 1402,971428571
y=-\frac{9440}{7}\approx -1348,571428571
Graph
Share
Copied to clipboard
x+y=54,4;25x+18y=10800
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=54,4
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+54,4
Subtract y from both sides of the equation.
25\left(-y+54,4\right)+18y=10800
Substitute -y+54,4 for x in the other equation, 25x+18y=10800.
-25y+1360+18y=10800
Multiply 25 times -y+54,4.
-7y+1360=10800
Add -25y to 18y.
-7y=9440
Subtract 1360 from both sides of the equation.
y=-\frac{9440}{7}
Divide both sides by -7.
x=-\left(-\frac{9440}{7}\right)+54,4
Substitute -\frac{9440}{7} for y in x=-y+54,4. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{9440}{7}+54,4
Multiply -1 times -\frac{9440}{7}.
x=\frac{49104}{35}
Add 54,4 to \frac{9440}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{49104}{35};y=-\frac{9440}{7}
The system is now solved.
x+y=54,4;25x+18y=10800
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\25&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}54,4\\10800\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\25&18\end{matrix}\right))\left(\begin{matrix}1&1\\25&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&18\end{matrix}\right))\left(\begin{matrix}54,4\\10800\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\25&18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&18\end{matrix}\right))\left(\begin{matrix}54,4\\10800\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&18\end{matrix}\right))\left(\begin{matrix}54,4\\10800\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{18-25}&-\frac{1}{18-25}\\-\frac{25}{18-25}&\frac{1}{18-25}\end{matrix}\right)\left(\begin{matrix}54,4\\10800\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{7}&\frac{1}{7}\\\frac{25}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}54,4\\10800\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{18}{7}\times 54,4+\frac{1}{7}\times 10800\\\frac{25}{7}\times 54,4-\frac{1}{7}\times 10800\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49104}{35}\\-\frac{9440}{7}\end{matrix}\right)
Do the arithmetic.
x=\frac{49104}{35};y=-\frac{9440}{7}
Extract the matrix elements x and y.
x+y=54,4;25x+18y=10800
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
25x+25y=25\times 54,4;25x+18y=10800
To make x and 25x equal, multiply all terms on each side of the first equation by 25 and all terms on each side of the second by 1.
25x+25y=1360;25x+18y=10800
Simplify.
25x-25x+25y-18y=1360-10800
Subtract 25x+18y=10800 from 25x+25y=1360 by subtracting like terms on each side of the equal sign.
25y-18y=1360-10800
Add 25x to -25x. Terms 25x and -25x cancel out, leaving an equation with only one variable that can be solved.
7y=1360-10800
Add 25y to -18y.
7y=-9440
Add 1360 to -10800.
y=-\frac{9440}{7}
Divide both sides by 7.
25x+18\left(-\frac{9440}{7}\right)=10800
Substitute -\frac{9440}{7} for y in 25x+18y=10800. Because the resulting equation contains only one variable, you can solve for x directly.
25x-\frac{169920}{7}=10800
Multiply 18 times -\frac{9440}{7}.
25x=\frac{245520}{7}
Add \frac{169920}{7} to both sides of the equation.
x=\frac{49104}{35}
Divide both sides by 25.
x=\frac{49104}{35};y=-\frac{9440}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}