\left\{ \begin{array} { l } { x + y = 450 } \\ { \frac { 2 } { 3 } x + \frac { 1 } { 4 } y = 200 } \end{array} \right.
Solve for x, y
x=210
y=240
Graph
Share
Copied to clipboard
x+y=450,\frac{2}{3}x+\frac{1}{4}y=200
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=450
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+450
Subtract y from both sides of the equation.
\frac{2}{3}\left(-y+450\right)+\frac{1}{4}y=200
Substitute -y+450 for x in the other equation, \frac{2}{3}x+\frac{1}{4}y=200.
-\frac{2}{3}y+300+\frac{1}{4}y=200
Multiply \frac{2}{3} times -y+450.
-\frac{5}{12}y+300=200
Add -\frac{2y}{3} to \frac{y}{4}.
-\frac{5}{12}y=-100
Subtract 300 from both sides of the equation.
y=240
Divide both sides of the equation by -\frac{5}{12}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-240+450
Substitute 240 for y in x=-y+450. Because the resulting equation contains only one variable, you can solve for x directly.
x=210
Add 450 to -240.
x=210,y=240
The system is now solved.
x+y=450,\frac{2}{3}x+\frac{1}{4}y=200
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{2}{3}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}450\\200\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{2}{3}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}450\\200\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{2}{3}&\frac{1}{4}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}450\\200\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{3}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}450\\200\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{\frac{1}{4}-\frac{2}{3}}&-\frac{1}{\frac{1}{4}-\frac{2}{3}}\\-\frac{\frac{2}{3}}{\frac{1}{4}-\frac{2}{3}}&\frac{1}{\frac{1}{4}-\frac{2}{3}}\end{matrix}\right)\left(\begin{matrix}450\\200\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{12}{5}\\\frac{8}{5}&-\frac{12}{5}\end{matrix}\right)\left(\begin{matrix}450\\200\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\times 450+\frac{12}{5}\times 200\\\frac{8}{5}\times 450-\frac{12}{5}\times 200\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}210\\240\end{matrix}\right)
Do the arithmetic.
x=210,y=240
Extract the matrix elements x and y.
x+y=450,\frac{2}{3}x+\frac{1}{4}y=200
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{2}{3}x+\frac{2}{3}y=\frac{2}{3}\times 450,\frac{2}{3}x+\frac{1}{4}y=200
To make x and \frac{2x}{3} equal, multiply all terms on each side of the first equation by \frac{2}{3} and all terms on each side of the second by 1.
\frac{2}{3}x+\frac{2}{3}y=300,\frac{2}{3}x+\frac{1}{4}y=200
Simplify.
\frac{2}{3}x-\frac{2}{3}x+\frac{2}{3}y-\frac{1}{4}y=300-200
Subtract \frac{2}{3}x+\frac{1}{4}y=200 from \frac{2}{3}x+\frac{2}{3}y=300 by subtracting like terms on each side of the equal sign.
\frac{2}{3}y-\frac{1}{4}y=300-200
Add \frac{2x}{3} to -\frac{2x}{3}. Terms \frac{2x}{3} and -\frac{2x}{3} cancel out, leaving an equation with only one variable that can be solved.
\frac{5}{12}y=300-200
Add \frac{2y}{3} to -\frac{y}{4}.
\frac{5}{12}y=100
Add 300 to -200.
y=240
Divide both sides of the equation by \frac{5}{12}, which is the same as multiplying both sides by the reciprocal of the fraction.
\frac{2}{3}x+\frac{1}{4}\times 240=200
Substitute 240 for y in \frac{2}{3}x+\frac{1}{4}y=200. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{2}{3}x+60=200
Multiply \frac{1}{4} times 240.
\frac{2}{3}x=140
Subtract 60 from both sides of the equation.
x=210
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=210,y=240
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}