\left\{ \begin{array} { l } { x + y = 45 } \\ { 18 x + 120 y = 6000 } \end{array} \right.
Solve for x, y
x = -\frac{100}{17} = -5\frac{15}{17} \approx -5.882352941
y = \frac{865}{17} = 50\frac{15}{17} \approx 50.882352941
Graph
Share
Copied to clipboard
x+y=45,18x+120y=6000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=45
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+45
Subtract y from both sides of the equation.
18\left(-y+45\right)+120y=6000
Substitute -y+45 for x in the other equation, 18x+120y=6000.
-18y+810+120y=6000
Multiply 18 times -y+45.
102y+810=6000
Add -18y to 120y.
102y=5190
Subtract 810 from both sides of the equation.
y=\frac{865}{17}
Divide both sides by 102.
x=-\frac{865}{17}+45
Substitute \frac{865}{17} for y in x=-y+45. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{100}{17}
Add 45 to -\frac{865}{17}.
x=-\frac{100}{17},y=\frac{865}{17}
The system is now solved.
x+y=45,18x+120y=6000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\18&120\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\6000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}1&1\\18&120\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\18&120\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\18&120\end{matrix}\right))\left(\begin{matrix}45\\6000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{120}{120-18}&-\frac{1}{120-18}\\-\frac{18}{120-18}&\frac{1}{120-18}\end{matrix}\right)\left(\begin{matrix}45\\6000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{17}&-\frac{1}{102}\\-\frac{3}{17}&\frac{1}{102}\end{matrix}\right)\left(\begin{matrix}45\\6000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{17}\times 45-\frac{1}{102}\times 6000\\-\frac{3}{17}\times 45+\frac{1}{102}\times 6000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{100}{17}\\\frac{865}{17}\end{matrix}\right)
Do the arithmetic.
x=-\frac{100}{17},y=\frac{865}{17}
Extract the matrix elements x and y.
x+y=45,18x+120y=6000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
18x+18y=18\times 45,18x+120y=6000
To make x and 18x equal, multiply all terms on each side of the first equation by 18 and all terms on each side of the second by 1.
18x+18y=810,18x+120y=6000
Simplify.
18x-18x+18y-120y=810-6000
Subtract 18x+120y=6000 from 18x+18y=810 by subtracting like terms on each side of the equal sign.
18y-120y=810-6000
Add 18x to -18x. Terms 18x and -18x cancel out, leaving an equation with only one variable that can be solved.
-102y=810-6000
Add 18y to -120y.
-102y=-5190
Add 810 to -6000.
y=\frac{865}{17}
Divide both sides by -102.
18x+120\times \frac{865}{17}=6000
Substitute \frac{865}{17} for y in 18x+120y=6000. Because the resulting equation contains only one variable, you can solve for x directly.
18x+\frac{103800}{17}=6000
Multiply 120 times \frac{865}{17}.
18x=-\frac{1800}{17}
Subtract \frac{103800}{17} from both sides of the equation.
x=-\frac{100}{17}
Divide both sides by 18.
x=-\frac{100}{17},y=\frac{865}{17}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}