\left\{ \begin{array} { l } { x + y = 400 } \\ { \frac { 1 } { 6 } x + \frac { 1 } { 2 } y = 118 } \end{array} \right.
Solve for x, y
x=246
y=154
Graph
Share
Copied to clipboard
x+y=400,\frac{1}{6}x+\frac{1}{2}y=118
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=400
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+400
Subtract y from both sides of the equation.
\frac{1}{6}\left(-y+400\right)+\frac{1}{2}y=118
Substitute -y+400 for x in the other equation, \frac{1}{6}x+\frac{1}{2}y=118.
-\frac{1}{6}y+\frac{200}{3}+\frac{1}{2}y=118
Multiply \frac{1}{6} times -y+400.
\frac{1}{3}y+\frac{200}{3}=118
Add -\frac{y}{6} to \frac{y}{2}.
\frac{1}{3}y=\frac{154}{3}
Subtract \frac{200}{3} from both sides of the equation.
y=154
Multiply both sides by 3.
x=-154+400
Substitute 154 for y in x=-y+400. Because the resulting equation contains only one variable, you can solve for x directly.
x=246
Add 400 to -154.
x=246,y=154
The system is now solved.
x+y=400,\frac{1}{6}x+\frac{1}{2}y=118
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{1}{6}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\118\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{1}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{1}{6}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}400\\118\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{1}{6}&\frac{1}{2}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}400\\118\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{6}&\frac{1}{2}\end{matrix}\right))\left(\begin{matrix}400\\118\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{2}}{\frac{1}{2}-\frac{1}{6}}&-\frac{1}{\frac{1}{2}-\frac{1}{6}}\\-\frac{\frac{1}{6}}{\frac{1}{2}-\frac{1}{6}}&\frac{1}{\frac{1}{2}-\frac{1}{6}}\end{matrix}\right)\left(\begin{matrix}400\\118\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-3\\-\frac{1}{2}&3\end{matrix}\right)\left(\begin{matrix}400\\118\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 400-3\times 118\\-\frac{1}{2}\times 400+3\times 118\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}246\\154\end{matrix}\right)
Do the arithmetic.
x=246,y=154
Extract the matrix elements x and y.
x+y=400,\frac{1}{6}x+\frac{1}{2}y=118
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{6}x+\frac{1}{6}y=\frac{1}{6}\times 400,\frac{1}{6}x+\frac{1}{2}y=118
To make x and \frac{x}{6} equal, multiply all terms on each side of the first equation by \frac{1}{6} and all terms on each side of the second by 1.
\frac{1}{6}x+\frac{1}{6}y=\frac{200}{3},\frac{1}{6}x+\frac{1}{2}y=118
Simplify.
\frac{1}{6}x-\frac{1}{6}x+\frac{1}{6}y-\frac{1}{2}y=\frac{200}{3}-118
Subtract \frac{1}{6}x+\frac{1}{2}y=118 from \frac{1}{6}x+\frac{1}{6}y=\frac{200}{3} by subtracting like terms on each side of the equal sign.
\frac{1}{6}y-\frac{1}{2}y=\frac{200}{3}-118
Add \frac{x}{6} to -\frac{x}{6}. Terms \frac{x}{6} and -\frac{x}{6} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{3}y=\frac{200}{3}-118
Add \frac{y}{6} to -\frac{y}{2}.
-\frac{1}{3}y=-\frac{154}{3}
Add \frac{200}{3} to -118.
y=154
Multiply both sides by -3.
\frac{1}{6}x+\frac{1}{2}\times 154=118
Substitute 154 for y in \frac{1}{6}x+\frac{1}{2}y=118. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{6}x+77=118
Multiply \frac{1}{2} times 154.
\frac{1}{6}x=41
Subtract 77 from both sides of the equation.
x=246
Multiply both sides by 6.
x=246,y=154
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}