\left\{ \begin{array} { l } { x + y = 40 - ( 6 + 7 ) } \\ { 2 x + 3 y = 180 - 1 \times 6 + 4 \times 7 } \end{array} \right.
Solve for x, y
x=-121
y=148
Graph
Share
Copied to clipboard
x+y=27,2x+3y=202
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=27
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+27
Subtract y from both sides of the equation.
2\left(-y+27\right)+3y=202
Substitute -y+27 for x in the other equation, 2x+3y=202.
-2y+54+3y=202
Multiply 2 times -y+27.
y+54=202
Add -2y to 3y.
y=148
Subtract 54 from both sides of the equation.
x=-148+27
Substitute 148 for y in x=-y+27. Because the resulting equation contains only one variable, you can solve for x directly.
x=-121
Add 27 to -148.
x=-121,y=148
The system is now solved.
x+y=27,2x+3y=202
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\202\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}27\\202\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}27\\202\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}27\\202\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}27\\202\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}27\\202\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 27-202\\-2\times 27+202\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-121\\148\end{matrix}\right)
Do the arithmetic.
x=-121,y=148
Extract the matrix elements x and y.
x+y=27,2x+3y=202
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+2y=2\times 27,2x+3y=202
To make x and 2x equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2x+2y=54,2x+3y=202
Simplify.
2x-2x+2y-3y=54-202
Subtract 2x+3y=202 from 2x+2y=54 by subtracting like terms on each side of the equal sign.
2y-3y=54-202
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-y=54-202
Add 2y to -3y.
-y=-148
Add 54 to -202.
y=148
Divide both sides by -1.
2x+3\times 148=202
Substitute 148 for y in 2x+3y=202. Because the resulting equation contains only one variable, you can solve for x directly.
2x+444=202
Multiply 3 times 148.
2x=-242
Subtract 444 from both sides of the equation.
x=-121
Divide both sides by 2.
x=-121,y=148
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}