Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=40,5x+8y=245
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=40
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+40
Subtract y from both sides of the equation.
5\left(-y+40\right)+8y=245
Substitute -y+40 for x in the other equation, 5x+8y=245.
-5y+200+8y=245
Multiply 5 times -y+40.
3y+200=245
Add -5y to 8y.
3y=45
Subtract 200 from both sides of the equation.
y=15
Divide both sides by 3.
x=-15+40
Substitute 15 for y in x=-y+40. Because the resulting equation contains only one variable, you can solve for x directly.
x=25
Add 40 to -15.
x=25,y=15
The system is now solved.
x+y=40,5x+8y=245
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\245\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\5&8\end{matrix}\right))\left(\begin{matrix}1&1\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&8\end{matrix}\right))\left(\begin{matrix}40\\245\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\5&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&8\end{matrix}\right))\left(\begin{matrix}40\\245\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&8\end{matrix}\right))\left(\begin{matrix}40\\245\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-5}&-\frac{1}{8-5}\\-\frac{5}{8-5}&\frac{1}{8-5}\end{matrix}\right)\left(\begin{matrix}40\\245\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}&-\frac{1}{3}\\-\frac{5}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}40\\245\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\times 40-\frac{1}{3}\times 245\\-\frac{5}{3}\times 40+\frac{1}{3}\times 245\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\15\end{matrix}\right)
Do the arithmetic.
x=25,y=15
Extract the matrix elements x and y.
x+y=40,5x+8y=245
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
5x+5y=5\times 40,5x+8y=245
To make x and 5x equal, multiply all terms on each side of the first equation by 5 and all terms on each side of the second by 1.
5x+5y=200,5x+8y=245
Simplify.
5x-5x+5y-8y=200-245
Subtract 5x+8y=245 from 5x+5y=200 by subtracting like terms on each side of the equal sign.
5y-8y=200-245
Add 5x to -5x. Terms 5x and -5x cancel out, leaving an equation with only one variable that can be solved.
-3y=200-245
Add 5y to -8y.
-3y=-45
Add 200 to -245.
y=15
Divide both sides by -3.
5x+8\times 15=245
Substitute 15 for y in 5x+8y=245. Because the resulting equation contains only one variable, you can solve for x directly.
5x+120=245
Multiply 8 times 15.
5x=125
Subtract 120 from both sides of the equation.
x=25
Divide both sides by 5.
x=25,y=15
The system is now solved.