Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=360,4\left(x+40\right)+2\left(1.5y-60\right)=1320
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=360
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+360
Subtract y from both sides of the equation.
4\left(-y+360+40\right)+2\left(1.5y-60\right)=1320
Substitute -y+360 for x in the other equation, 4\left(x+40\right)+2\left(1.5y-60\right)=1320.
4\left(-y+400\right)+2\left(1.5y-60\right)=1320
Add 360 to 40.
-4y+1600+2\left(1.5y-60\right)=1320
Multiply 4 times -y+400.
-4y+1600+3y-120=1320
Multiply 2 times \frac{3y}{2}-60.
-y+1600-120=1320
Add -4y to 3y.
-y+1480=1320
Add 1600 to -120.
-y=-160
Subtract 1480 from both sides of the equation.
y=160
Divide both sides by -1.
x=-160+360
Substitute 160 for y in x=-y+360. Because the resulting equation contains only one variable, you can solve for x directly.
x=200
Add 360 to -160.
x=200,y=160
The system is now solved.
x+y=360,4\left(x+40\right)+2\left(1.5y-60\right)=1320
Put the equations in standard form and then use matrices to solve the system of equations.
4\left(x+40\right)+2\left(1.5y-60\right)=1320
Simplify the second equation to put it in standard form.
4x+160+2\left(1.5y-60\right)=1320
Multiply 4 times x+40.
4x+160+3y-120=1320
Multiply 2 times 1.5y-60.
4x+3y+40=1320
Add 160 to -120.
4x+3y=1280
Subtract 40 from both sides of the equation.
\left(\begin{matrix}1&1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}360\\1280\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}1&1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}360\\1280\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}360\\1280\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}360\\1280\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4}&-\frac{1}{3-4}\\-\frac{4}{3-4}&\frac{1}{3-4}\end{matrix}\right)\left(\begin{matrix}360\\1280\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&1\\4&-1\end{matrix}\right)\left(\begin{matrix}360\\1280\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 360+1280\\4\times 360-1280\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\160\end{matrix}\right)
Do the arithmetic.
x=200,y=160
Extract the matrix elements x and y.