\left\{ \begin{array} { l } { x + y = 36 } \\ { \frac { 5 } { 7 } = \frac { x } { 4 } } \end{array} \right.
Solve for x, y
x = \frac{20}{7} = 2\frac{6}{7} \approx 2.857142857
y = \frac{232}{7} = 33\frac{1}{7} \approx 33.142857143
Graph
Share
Copied to clipboard
\frac{5}{7}\times 4=x
Consider the second equation. Multiply both sides by 4.
\frac{20}{7}=x
Multiply \frac{5}{7} and 4 to get \frac{20}{7}.
x=\frac{20}{7}
Swap sides so that all variable terms are on the left hand side.
\frac{20}{7}+y=36
Consider the first equation. Insert the known values of variables into the equation.
y=36-\frac{20}{7}
Subtract \frac{20}{7} from both sides.
y=\frac{232}{7}
Subtract \frac{20}{7} from 36 to get \frac{232}{7}.
x=\frac{20}{7} y=\frac{232}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}