\left\{ \begin{array} { l } { x + y = 3000 } \\ { 40 x + 20 y = 78000 } \end{array} \right.
Solve for x, y
x=900
y=2100
Graph
Share
Copied to clipboard
x+y=3000,40x+20y=78000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=3000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+3000
Subtract y from both sides of the equation.
40\left(-y+3000\right)+20y=78000
Substitute -y+3000 for x in the other equation, 40x+20y=78000.
-40y+120000+20y=78000
Multiply 40 times -y+3000.
-20y+120000=78000
Add -40y to 20y.
-20y=-42000
Subtract 120000 from both sides of the equation.
y=2100
Divide both sides by -20.
x=-2100+3000
Substitute 2100 for y in x=-y+3000. Because the resulting equation contains only one variable, you can solve for x directly.
x=900
Add 3000 to -2100.
x=900,y=2100
The system is now solved.
x+y=3000,40x+20y=78000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\40&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3000\\78000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\40&20\end{matrix}\right))\left(\begin{matrix}1&1\\40&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&20\end{matrix}\right))\left(\begin{matrix}3000\\78000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\40&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&20\end{matrix}\right))\left(\begin{matrix}3000\\78000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\40&20\end{matrix}\right))\left(\begin{matrix}3000\\78000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{20-40}&-\frac{1}{20-40}\\-\frac{40}{20-40}&\frac{1}{20-40}\end{matrix}\right)\left(\begin{matrix}3000\\78000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{1}{20}\\2&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}3000\\78000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3000+\frac{1}{20}\times 78000\\2\times 3000-\frac{1}{20}\times 78000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}900\\2100\end{matrix}\right)
Do the arithmetic.
x=900,y=2100
Extract the matrix elements x and y.
x+y=3000,40x+20y=78000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
40x+40y=40\times 3000,40x+20y=78000
To make x and 40x equal, multiply all terms on each side of the first equation by 40 and all terms on each side of the second by 1.
40x+40y=120000,40x+20y=78000
Simplify.
40x-40x+40y-20y=120000-78000
Subtract 40x+20y=78000 from 40x+40y=120000 by subtracting like terms on each side of the equal sign.
40y-20y=120000-78000
Add 40x to -40x. Terms 40x and -40x cancel out, leaving an equation with only one variable that can be solved.
20y=120000-78000
Add 40y to -20y.
20y=42000
Add 120000 to -78000.
y=2100
Divide both sides by 20.
40x+20\times 2100=78000
Substitute 2100 for y in 40x+20y=78000. Because the resulting equation contains only one variable, you can solve for x directly.
40x+42000=78000
Multiply 20 times 2100.
40x=36000
Subtract 42000 from both sides of the equation.
x=900
Divide both sides by 40.
x=900,y=2100
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}