Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=30,20x+25y=690
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=30
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+30
Subtract y from both sides of the equation.
20\left(-y+30\right)+25y=690
Substitute -y+30 for x in the other equation, 20x+25y=690.
-20y+600+25y=690
Multiply 20 times -y+30.
5y+600=690
Add -20y to 25y.
5y=90
Subtract 600 from both sides of the equation.
y=18
Divide both sides by 5.
x=-18+30
Substitute 18 for y in x=-y+30. Because the resulting equation contains only one variable, you can solve for x directly.
x=12
Add 30 to -18.
x=12,y=18
The system is now solved.
x+y=30,20x+25y=690
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\690\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}1&1\\20&25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\690\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\20&25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\690\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\20&25\end{matrix}\right))\left(\begin{matrix}30\\690\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{25-20}&-\frac{1}{25-20}\\-\frac{20}{25-20}&\frac{1}{25-20}\end{matrix}\right)\left(\begin{matrix}30\\690\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-\frac{1}{5}\\-4&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}30\\690\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 30-\frac{1}{5}\times 690\\-4\times 30+\frac{1}{5}\times 690\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\18\end{matrix}\right)
Do the arithmetic.
x=12,y=18
Extract the matrix elements x and y.
x+y=30,20x+25y=690
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
20x+20y=20\times 30,20x+25y=690
To make x and 20x equal, multiply all terms on each side of the first equation by 20 and all terms on each side of the second by 1.
20x+20y=600,20x+25y=690
Simplify.
20x-20x+20y-25y=600-690
Subtract 20x+25y=690 from 20x+20y=600 by subtracting like terms on each side of the equal sign.
20y-25y=600-690
Add 20x to -20x. Terms 20x and -20x cancel out, leaving an equation with only one variable that can be solved.
-5y=600-690
Add 20y to -25y.
-5y=-90
Add 600 to -690.
y=18
Divide both sides by -5.
20x+25\times 18=690
Substitute 18 for y in 20x+25y=690. Because the resulting equation contains only one variable, you can solve for x directly.
20x+450=690
Multiply 25 times 18.
20x=240
Subtract 450 from both sides of the equation.
x=12
Divide both sides by 20.
x=12,y=18
The system is now solved.