\left\{ \begin{array} { l } { x + y = 30 } \\ { 10 x + 50 y = 900 } \end{array} \right.
Solve for x, y
x=15
y=15
Graph
Share
Copied to clipboard
x+y=30,10x+50y=900
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=30
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+30
Subtract y from both sides of the equation.
10\left(-y+30\right)+50y=900
Substitute -y+30 for x in the other equation, 10x+50y=900.
-10y+300+50y=900
Multiply 10 times -y+30.
40y+300=900
Add -10y to 50y.
40y=600
Subtract 300 from both sides of the equation.
y=15
Divide both sides by 40.
x=-15+30
Substitute 15 for y in x=-y+30. Because the resulting equation contains only one variable, you can solve for x directly.
x=15
Add 30 to -15.
x=15,y=15
The system is now solved.
x+y=30,10x+50y=900
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\10&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\900\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}1&1\\10&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}30\\900\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\10&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}30\\900\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&50\end{matrix}\right))\left(\begin{matrix}30\\900\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-10}&-\frac{1}{50-10}\\-\frac{10}{50-10}&\frac{1}{50-10}\end{matrix}\right)\left(\begin{matrix}30\\900\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}&-\frac{1}{40}\\-\frac{1}{4}&\frac{1}{40}\end{matrix}\right)\left(\begin{matrix}30\\900\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\times 30-\frac{1}{40}\times 900\\-\frac{1}{4}\times 30+\frac{1}{40}\times 900\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\15\end{matrix}\right)
Do the arithmetic.
x=15,y=15
Extract the matrix elements x and y.
x+y=30,10x+50y=900
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+10y=10\times 30,10x+50y=900
To make x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 1.
10x+10y=300,10x+50y=900
Simplify.
10x-10x+10y-50y=300-900
Subtract 10x+50y=900 from 10x+10y=300 by subtracting like terms on each side of the equal sign.
10y-50y=300-900
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-40y=300-900
Add 10y to -50y.
-40y=-600
Add 300 to -900.
y=15
Divide both sides by -40.
10x+50\times 15=900
Substitute 15 for y in 10x+50y=900. Because the resulting equation contains only one variable, you can solve for x directly.
10x+750=900
Multiply 50 times 15.
10x=150
Subtract 750 from both sides of the equation.
x=15
Divide both sides by 10.
x=15,y=15
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}