Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=3,2y^{2}+x^{2}=6
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=3
Solve x+y=3 for x by isolating x on the left hand side of the equal sign.
x=-y+3
Subtract y from both sides of the equation.
2y^{2}+\left(-y+3\right)^{2}=6
Substitute -y+3 for x in the other equation, 2y^{2}+x^{2}=6.
2y^{2}+y^{2}-6y+9=6
Square -y+3.
3y^{2}-6y+9=6
Add 2y^{2} to y^{2}.
3y^{2}-6y+3=0
Subtract 6 from both sides of the equation.
y=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\times 3}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2+1\left(-1\right)^{2} for a, 1\times 3\left(-1\right)\times 2 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-6\right)±\sqrt{36-4\times 3\times 3}}{2\times 3}
Square 1\times 3\left(-1\right)\times 2.
y=\frac{-\left(-6\right)±\sqrt{36-12\times 3}}{2\times 3}
Multiply -4 times 2+1\left(-1\right)^{2}.
y=\frac{-\left(-6\right)±\sqrt{36-36}}{2\times 3}
Multiply -12 times 3.
y=\frac{-\left(-6\right)±\sqrt{0}}{2\times 3}
Add 36 to -36.
y=-\frac{-6}{2\times 3}
Take the square root of 0.
y=\frac{6}{2\times 3}
The opposite of 1\times 3\left(-1\right)\times 2 is 6.
y=\frac{6}{6}
Multiply 2 times 2+1\left(-1\right)^{2}.
y=1
Divide 6 by 6.
x=-1+3
There are two solutions for y: 1 and 1. Substitute 1 for y in the equation x=-y+3 to find the corresponding solution for x that satisfies both equations.
x=2
Add -1 to 3.
x=2,y=1\text{ or }x=2,y=1
The system is now solved.