Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=2800,4x+0.13y=3460
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=2800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+2800
Subtract y from both sides of the equation.
4\left(-y+2800\right)+0.13y=3460
Substitute -y+2800 for x in the other equation, 4x+0.13y=3460.
-4y+11200+0.13y=3460
Multiply 4 times -y+2800.
-3.87y+11200=3460
Add -4y to \frac{13y}{100}.
-3.87y=-7740
Subtract 11200 from both sides of the equation.
y=2000
Divide both sides of the equation by -3.87, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-2000+2800
Substitute 2000 for y in x=-y+2800. Because the resulting equation contains only one variable, you can solve for x directly.
x=800
Add 2800 to -2000.
x=800,y=2000
The system is now solved.
x+y=2800,4x+0.13y=3460
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&0.13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2800\\3460\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&0.13\end{matrix}\right))\left(\begin{matrix}1&1\\4&0.13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&0.13\end{matrix}\right))\left(\begin{matrix}2800\\3460\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&0.13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&0.13\end{matrix}\right))\left(\begin{matrix}2800\\3460\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&0.13\end{matrix}\right))\left(\begin{matrix}2800\\3460\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.13}{0.13-4}&-\frac{1}{0.13-4}\\-\frac{4}{0.13-4}&\frac{1}{0.13-4}\end{matrix}\right)\left(\begin{matrix}2800\\3460\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{387}&\frac{100}{387}\\\frac{400}{387}&-\frac{100}{387}\end{matrix}\right)\left(\begin{matrix}2800\\3460\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{387}\times 2800+\frac{100}{387}\times 3460\\\frac{400}{387}\times 2800-\frac{100}{387}\times 3460\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\2000\end{matrix}\right)
Do the arithmetic.
x=800,y=2000
Extract the matrix elements x and y.
x+y=2800,4x+0.13y=3460
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 2800,4x+0.13y=3460
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=11200,4x+0.13y=3460
Simplify.
4x-4x+4y-0.13y=11200-3460
Subtract 4x+0.13y=3460 from 4x+4y=11200 by subtracting like terms on each side of the equal sign.
4y-0.13y=11200-3460
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
3.87y=11200-3460
Add 4y to -\frac{13y}{100}.
3.87y=7740
Add 11200 to -3460.
y=2000
Divide both sides of the equation by 3.87, which is the same as multiplying both sides by the reciprocal of the fraction.
4x+0.13\times 2000=3460
Substitute 2000 for y in 4x+0.13y=3460. Because the resulting equation contains only one variable, you can solve for x directly.
4x+260=3460
Multiply 0.13 times 2000.
4x=3200
Subtract 260 from both sides of the equation.
x=800
Divide both sides by 4.
x=800,y=2000
The system is now solved.