Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=27,10x+15y=330
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=27
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+27
Subtract y from both sides of the equation.
10\left(-y+27\right)+15y=330
Substitute -y+27 for x in the other equation, 10x+15y=330.
-10y+270+15y=330
Multiply 10 times -y+27.
5y+270=330
Add -10y to 15y.
5y=60
Subtract 270 from both sides of the equation.
y=12
Divide both sides by 5.
x=-12+27
Substitute 12 for y in x=-y+27. Because the resulting equation contains only one variable, you can solve for x directly.
x=15
Add 27 to -12.
x=15,y=12
The system is now solved.
x+y=27,10x+15y=330
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\10&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\330\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\10&15\end{matrix}\right))\left(\begin{matrix}1&1\\10&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&15\end{matrix}\right))\left(\begin{matrix}27\\330\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\10&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&15\end{matrix}\right))\left(\begin{matrix}27\\330\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&15\end{matrix}\right))\left(\begin{matrix}27\\330\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-10}&-\frac{1}{15-10}\\-\frac{10}{15-10}&\frac{1}{15-10}\end{matrix}\right)\left(\begin{matrix}27\\330\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-\frac{1}{5}\\-2&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}27\\330\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 27-\frac{1}{5}\times 330\\-2\times 27+\frac{1}{5}\times 330\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\12\end{matrix}\right)
Do the arithmetic.
x=15,y=12
Extract the matrix elements x and y.
x+y=27,10x+15y=330
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+10y=10\times 27,10x+15y=330
To make x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 1.
10x+10y=270,10x+15y=330
Simplify.
10x-10x+10y-15y=270-330
Subtract 10x+15y=330 from 10x+10y=270 by subtracting like terms on each side of the equal sign.
10y-15y=270-330
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-5y=270-330
Add 10y to -15y.
-5y=-60
Add 270 to -330.
y=12
Divide both sides by -5.
10x+15\times 12=330
Substitute 12 for y in 10x+15y=330. Because the resulting equation contains only one variable, you can solve for x directly.
10x+180=330
Multiply 15 times 12.
10x=150
Subtract 180 from both sides of the equation.
x=15
Divide both sides by 10.
x=15,y=12
The system is now solved.