\left\{ \begin{array} { l } { x + y = 2500 } \\ { \frac { x } { 600 } + \frac { y } { 200 } = 75 } \end{array} \right.
Solve for x, y
x=-18750
y=21250
Graph
Share
Copied to clipboard
x+y=2500,\frac{1}{600}x+\frac{1}{200}y=75
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=2500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+2500
Subtract y from both sides of the equation.
\frac{1}{600}\left(-y+2500\right)+\frac{1}{200}y=75
Substitute -y+2500 for x in the other equation, \frac{1}{600}x+\frac{1}{200}y=75.
-\frac{1}{600}y+\frac{25}{6}+\frac{1}{200}y=75
Multiply \frac{1}{600} times -y+2500.
\frac{1}{300}y+\frac{25}{6}=75
Add -\frac{y}{600} to \frac{y}{200}.
\frac{1}{300}y=\frac{425}{6}
Subtract \frac{25}{6} from both sides of the equation.
y=21250
Multiply both sides by 300.
x=-21250+2500
Substitute 21250 for y in x=-y+2500. Because the resulting equation contains only one variable, you can solve for x directly.
x=-18750
Add 2500 to -21250.
x=-18750,y=21250
The system is now solved.
x+y=2500,\frac{1}{600}x+\frac{1}{200}y=75
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2500\\75\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}2500\\75\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}2500\\75\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{600}&\frac{1}{200}\end{matrix}\right))\left(\begin{matrix}2500\\75\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{200}}{\frac{1}{200}-\frac{1}{600}}&-\frac{1}{\frac{1}{200}-\frac{1}{600}}\\-\frac{\frac{1}{600}}{\frac{1}{200}-\frac{1}{600}}&\frac{1}{\frac{1}{200}-\frac{1}{600}}\end{matrix}\right)\left(\begin{matrix}2500\\75\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-300\\-\frac{1}{2}&300\end{matrix}\right)\left(\begin{matrix}2500\\75\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 2500-300\times 75\\-\frac{1}{2}\times 2500+300\times 75\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-18750\\21250\end{matrix}\right)
Do the arithmetic.
x=-18750,y=21250
Extract the matrix elements x and y.
x+y=2500,\frac{1}{600}x+\frac{1}{200}y=75
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{600}x+\frac{1}{600}y=\frac{1}{600}\times 2500,\frac{1}{600}x+\frac{1}{200}y=75
To make x and \frac{x}{600} equal, multiply all terms on each side of the first equation by \frac{1}{600} and all terms on each side of the second by 1.
\frac{1}{600}x+\frac{1}{600}y=\frac{25}{6},\frac{1}{600}x+\frac{1}{200}y=75
Simplify.
\frac{1}{600}x-\frac{1}{600}x+\frac{1}{600}y-\frac{1}{200}y=\frac{25}{6}-75
Subtract \frac{1}{600}x+\frac{1}{200}y=75 from \frac{1}{600}x+\frac{1}{600}y=\frac{25}{6} by subtracting like terms on each side of the equal sign.
\frac{1}{600}y-\frac{1}{200}y=\frac{25}{6}-75
Add \frac{x}{600} to -\frac{x}{600}. Terms \frac{x}{600} and -\frac{x}{600} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{300}y=\frac{25}{6}-75
Add \frac{y}{600} to -\frac{y}{200}.
-\frac{1}{300}y=-\frac{425}{6}
Add \frac{25}{6} to -75.
y=21250
Multiply both sides by -300.
\frac{1}{600}x+\frac{1}{200}\times 21250=75
Substitute 21250 for y in \frac{1}{600}x+\frac{1}{200}y=75. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{600}x+\frac{425}{4}=75
Multiply \frac{1}{200} times 21250.
\frac{1}{600}x=-\frac{125}{4}
Subtract \frac{425}{4} from both sides of the equation.
x=-18750
Multiply both sides by 600.
x=-18750,y=21250
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}