\left\{ \begin{array} { l } { x + y = 240 } \\ { 156.3 x + 168.3 y + 161 \times 120 = 161.8 \times 360 } \end{array} \right.
Solve for x, y
x=122
y=118
Graph
Share
Copied to clipboard
x+y=240,156.3x+168.3y+19320=58248
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=240
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+240
Subtract y from both sides of the equation.
156.3\left(-y+240\right)+168.3y+19320=58248
Substitute -y+240 for x in the other equation, 156.3x+168.3y+19320=58248.
-156.3y+37512+168.3y+19320=58248
Multiply 156.3 times -y+240.
12y+37512+19320=58248
Add -\frac{1563y}{10} to \frac{1683y}{10}.
12y+56832=58248
Add 37512 to 19320.
12y=1416
Subtract 56832 from both sides of the equation.
y=118
Divide both sides by 12.
x=-118+240
Substitute 118 for y in x=-y+240. Because the resulting equation contains only one variable, you can solve for x directly.
x=122
Add 240 to -118.
x=122,y=118
The system is now solved.
x+y=240,156.3x+168.3y+19320=58248
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\156.3&168.3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\38928\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\156.3&168.3\end{matrix}\right))\left(\begin{matrix}1&1\\156.3&168.3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\156.3&168.3\end{matrix}\right))\left(\begin{matrix}240\\38928\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\156.3&168.3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\156.3&168.3\end{matrix}\right))\left(\begin{matrix}240\\38928\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\156.3&168.3\end{matrix}\right))\left(\begin{matrix}240\\38928\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{168.3}{168.3-156.3}&-\frac{1}{168.3-156.3}\\-\frac{156.3}{168.3-156.3}&\frac{1}{168.3-156.3}\end{matrix}\right)\left(\begin{matrix}240\\38928\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{561}{40}&-\frac{1}{12}\\-\frac{521}{40}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}240\\38928\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{561}{40}\times 240-\frac{1}{12}\times 38928\\-\frac{521}{40}\times 240+\frac{1}{12}\times 38928\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}122\\118\end{matrix}\right)
Do the arithmetic.
x=122,y=118
Extract the matrix elements x and y.
x+y=240,156.3x+168.3y+19320=58248
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
156.3x+156.3y=156.3\times 240,156.3x+168.3y+19320=58248
To make x and \frac{1563x}{10} equal, multiply all terms on each side of the first equation by 156.3 and all terms on each side of the second by 1.
156.3x+156.3y=37512,156.3x+168.3y+19320=58248
Simplify.
156.3x-156.3x+156.3y-168.3y-19320=37512-58248
Subtract 156.3x+168.3y+19320=58248 from 156.3x+156.3y=37512 by subtracting like terms on each side of the equal sign.
156.3y-168.3y-19320=37512-58248
Add \frac{1563x}{10} to -\frac{1563x}{10}. Terms \frac{1563x}{10} and -\frac{1563x}{10} cancel out, leaving an equation with only one variable that can be solved.
-12y-19320=37512-58248
Add \frac{1563y}{10} to -\frac{1683y}{10}.
-12y-19320=-20736
Add 37512 to -58248.
-12y=-1416
Add 19320 to both sides of the equation.
y=118
Divide both sides by -12.
156.3x+168.3\times 118+19320=58248
Substitute 118 for y in 156.3x+168.3y+19320=58248. Because the resulting equation contains only one variable, you can solve for x directly.
156.3x+19859.4+19320=58248
Multiply 168.3 times 118.
156.3x+39179.4=58248
Add 19859.4 to 19320.
156.3x=19068.6
Subtract 39179.4 from both sides of the equation.
x=122
Divide both sides of the equation by 156.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x=122,y=118
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}