\left\{ \begin{array} { l } { x + y = 240 } \\ { 156 - 3 x + 168.3 y + 161 \times 120 = 1668 \times 360 } \end{array} \right.
Solve for x, y
x = -\frac{1802040}{571} = -3155\frac{535}{571} \approx -3155.936952715
y = \frac{1939080}{571} = 3395\frac{535}{571} \approx 3395.936952715
Graph
Share
Copied to clipboard
x+y=240,-3x+168.3y+19476=600480
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=240
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+240
Subtract y from both sides of the equation.
-3\left(-y+240\right)+168.3y+19476=600480
Substitute -y+240 for x in the other equation, -3x+168.3y+19476=600480.
3y-720+168.3y+19476=600480
Multiply -3 times -y+240.
171.3y-720+19476=600480
Add 3y to \frac{1683y}{10}.
171.3y+18756=600480
Add -720 to 19476.
171.3y=581724
Subtract 18756 from both sides of the equation.
y=\frac{1939080}{571}
Divide both sides of the equation by 171.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1939080}{571}+240
Substitute \frac{1939080}{571} for y in x=-y+240. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{1802040}{571}
Add 240 to -\frac{1939080}{571}.
x=-\frac{1802040}{571},y=\frac{1939080}{571}
The system is now solved.
x+y=240,-3x+168.3y+19476=600480
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\-3&168.3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}240\\581004\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\-3&168.3\end{matrix}\right))\left(\begin{matrix}1&1\\-3&168.3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&168.3\end{matrix}\right))\left(\begin{matrix}240\\581004\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\-3&168.3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&168.3\end{matrix}\right))\left(\begin{matrix}240\\581004\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&168.3\end{matrix}\right))\left(\begin{matrix}240\\581004\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{168.3}{168.3-\left(-3\right)}&-\frac{1}{168.3-\left(-3\right)}\\-\frac{-3}{168.3-\left(-3\right)}&\frac{1}{168.3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}240\\581004\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{561}{571}&-\frac{10}{1713}\\\frac{10}{571}&\frac{10}{1713}\end{matrix}\right)\left(\begin{matrix}240\\581004\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{561}{571}\times 240-\frac{10}{1713}\times 581004\\\frac{10}{571}\times 240+\frac{10}{1713}\times 581004\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1802040}{571}\\\frac{1939080}{571}\end{matrix}\right)
Do the arithmetic.
x=-\frac{1802040}{571},y=\frac{1939080}{571}
Extract the matrix elements x and y.
x+y=240,-3x+168.3y+19476=600480
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-3x-3y=-3\times 240,-3x+168.3y+19476=600480
To make x and -3x equal, multiply all terms on each side of the first equation by -3 and all terms on each side of the second by 1.
-3x-3y=-720,-3x+168.3y+19476=600480
Simplify.
-3x+3x-3y-168.3y-19476=-720-600480
Subtract -3x+168.3y+19476=600480 from -3x-3y=-720 by subtracting like terms on each side of the equal sign.
-3y-168.3y-19476=-720-600480
Add -3x to 3x. Terms -3x and 3x cancel out, leaving an equation with only one variable that can be solved.
-171.3y-19476=-720-600480
Add -3y to -\frac{1683y}{10}.
-171.3y-19476=-601200
Add -720 to -600480.
-171.3y=-581724
Add 19476 to both sides of the equation.
y=\frac{1939080}{571}
Divide both sides of the equation by -171.3, which is the same as multiplying both sides by the reciprocal of the fraction.
-3x+168.3\times \frac{1939080}{571}+19476=600480
Substitute \frac{1939080}{571} for y in -3x+168.3y+19476=600480. Because the resulting equation contains only one variable, you can solve for x directly.
-3x+\frac{326347164}{571}+19476=600480
Multiply 168.3 times \frac{1939080}{571} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-3x+\frac{337467960}{571}=600480
Add \frac{326347164}{571} to 19476.
-3x=\frac{5406120}{571}
Subtract \frac{337467960}{571} from both sides of the equation.
x=-\frac{1802040}{571}
Divide both sides by -3.
x=-\frac{1802040}{571},y=\frac{1939080}{571}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}