Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

1200x-4000y=0
Consider the second equation. Subtract 4000y from both sides.
x+y=22,1200x-4000y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=22
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+22
Subtract y from both sides of the equation.
1200\left(-y+22\right)-4000y=0
Substitute -y+22 for x in the other equation, 1200x-4000y=0.
-1200y+26400-4000y=0
Multiply 1200 times -y+22.
-5200y+26400=0
Add -1200y to -4000y.
-5200y=-26400
Subtract 26400 from both sides of the equation.
y=\frac{66}{13}
Divide both sides by -5200.
x=-\frac{66}{13}+22
Substitute \frac{66}{13} for y in x=-y+22. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{220}{13}
Add 22 to -\frac{66}{13}.
x=\frac{220}{13},y=\frac{66}{13}
The system is now solved.
1200x-4000y=0
Consider the second equation. Subtract 4000y from both sides.
x+y=22,1200x-4000y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\1200&-4000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1200&-4000\end{matrix}\right))\left(\begin{matrix}1&1\\1200&-4000\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1200&-4000\end{matrix}\right))\left(\begin{matrix}22\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1200&-4000\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1200&-4000\end{matrix}\right))\left(\begin{matrix}22\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1200&-4000\end{matrix}\right))\left(\begin{matrix}22\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4000}{-4000-1200}&-\frac{1}{-4000-1200}\\-\frac{1200}{-4000-1200}&\frac{1}{-4000-1200}\end{matrix}\right)\left(\begin{matrix}22\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{13}&\frac{1}{5200}\\\frac{3}{13}&-\frac{1}{5200}\end{matrix}\right)\left(\begin{matrix}22\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{13}\times 22\\\frac{3}{13}\times 22\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{220}{13}\\\frac{66}{13}\end{matrix}\right)
Do the arithmetic.
x=\frac{220}{13},y=\frac{66}{13}
Extract the matrix elements x and y.
1200x-4000y=0
Consider the second equation. Subtract 4000y from both sides.
x+y=22,1200x-4000y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
1200x+1200y=1200\times 22,1200x-4000y=0
To make x and 1200x equal, multiply all terms on each side of the first equation by 1200 and all terms on each side of the second by 1.
1200x+1200y=26400,1200x-4000y=0
Simplify.
1200x-1200x+1200y+4000y=26400
Subtract 1200x-4000y=0 from 1200x+1200y=26400 by subtracting like terms on each side of the equal sign.
1200y+4000y=26400
Add 1200x to -1200x. Terms 1200x and -1200x cancel out, leaving an equation with only one variable that can be solved.
5200y=26400
Add 1200y to 4000y.
y=\frac{66}{13}
Divide both sides by 5200.
1200x-4000\times \frac{66}{13}=0
Substitute \frac{66}{13} for y in 1200x-4000y=0. Because the resulting equation contains only one variable, you can solve for x directly.
1200x-\frac{264000}{13}=0
Multiply -4000 times \frac{66}{13}.
1200x=\frac{264000}{13}
Add \frac{264000}{13} to both sides of the equation.
x=\frac{220}{13}
Divide both sides by 1200.
x=\frac{220}{13},y=\frac{66}{13}
The system is now solved.