Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=200,11x+9y=1960
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+200
Subtract y from both sides of the equation.
11\left(-y+200\right)+9y=1960
Substitute -y+200 for x in the other equation, 11x+9y=1960.
-11y+2200+9y=1960
Multiply 11 times -y+200.
-2y+2200=1960
Add -11y to 9y.
-2y=-240
Subtract 2200 from both sides of the equation.
y=120
Divide both sides by -2.
x=-120+200
Substitute 120 for y in x=-y+200. Because the resulting equation contains only one variable, you can solve for x directly.
x=80
Add 200 to -120.
x=80,y=120
The system is now solved.
x+y=200,11x+9y=1960
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\11&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\1960\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\11&9\end{matrix}\right))\left(\begin{matrix}1&1\\11&9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\11&9\end{matrix}\right))\left(\begin{matrix}200\\1960\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\11&9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\11&9\end{matrix}\right))\left(\begin{matrix}200\\1960\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\11&9\end{matrix}\right))\left(\begin{matrix}200\\1960\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{9-11}&-\frac{1}{9-11}\\-\frac{11}{9-11}&\frac{1}{9-11}\end{matrix}\right)\left(\begin{matrix}200\\1960\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{2}&\frac{1}{2}\\\frac{11}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}200\\1960\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{2}\times 200+\frac{1}{2}\times 1960\\\frac{11}{2}\times 200-\frac{1}{2}\times 1960\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\120\end{matrix}\right)
Do the arithmetic.
x=80,y=120
Extract the matrix elements x and y.
x+y=200,11x+9y=1960
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
11x+11y=11\times 200,11x+9y=1960
To make x and 11x equal, multiply all terms on each side of the first equation by 11 and all terms on each side of the second by 1.
11x+11y=2200,11x+9y=1960
Simplify.
11x-11x+11y-9y=2200-1960
Subtract 11x+9y=1960 from 11x+11y=2200 by subtracting like terms on each side of the equal sign.
11y-9y=2200-1960
Add 11x to -11x. Terms 11x and -11x cancel out, leaving an equation with only one variable that can be solved.
2y=2200-1960
Add 11y to -9y.
2y=240
Add 2200 to -1960.
y=120
Divide both sides by 2.
11x+9\times 120=1960
Substitute 120 for y in 11x+9y=1960. Because the resulting equation contains only one variable, you can solve for x directly.
11x+1080=1960
Multiply 9 times 120.
11x=880
Subtract 1080 from both sides of the equation.
x=80
Divide both sides by 11.
x=80,y=120
The system is now solved.