\left\{ \begin{array} { l } { x + y = 200 } \\ { 1.05 + 1.15 y = 225 } \end{array} \right.
Solve for x, y
x = \frac{121}{23} = 5\frac{6}{23} \approx 5.260869565
y = \frac{4479}{23} = 194\frac{17}{23} \approx 194.739130435
Graph
Share
Copied to clipboard
1.15y=225-1.05
Consider the second equation. Subtract 1.05 from both sides.
1.15y=223.95
Subtract 1.05 from 225 to get 223.95.
y=\frac{223.95}{1.15}
Divide both sides by 1.15.
y=\frac{22395}{115}
Expand \frac{223.95}{1.15} by multiplying both numerator and the denominator by 100.
y=\frac{4479}{23}
Reduce the fraction \frac{22395}{115} to lowest terms by extracting and canceling out 5.
x+\frac{4479}{23}=200
Consider the first equation. Insert the known values of variables into the equation.
x=200-\frac{4479}{23}
Subtract \frac{4479}{23} from both sides.
x=\frac{121}{23}
Subtract \frac{4479}{23} from 200 to get \frac{121}{23}.
x=\frac{121}{23} y=\frac{4479}{23}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}