\left\{ \begin{array} { l } { x + y = 200 } \\ { \frac { \frac { x } { 9 } + \frac { y } { 49 } } { 200 } = \frac { 8 } { 100 } } \end{array} \right.
Solve for x, y
x = \frac{657}{5} = 131\frac{2}{5} = 131.4
y = \frac{343}{5} = 68\frac{3}{5} = 68.6
Graph
Share
Copied to clipboard
\frac{x}{9}+\frac{y}{49}=2\times 8
Consider the second equation. Multiply both sides of the equation by 200, the least common multiple of 200,100.
\frac{49x}{441}+\frac{9y}{441}=2\times 8
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 49 is 441. Multiply \frac{x}{9} times \frac{49}{49}. Multiply \frac{y}{49} times \frac{9}{9}.
\frac{49x+9y}{441}=2\times 8
Since \frac{49x}{441} and \frac{9y}{441} have the same denominator, add them by adding their numerators.
\frac{49x+9y}{441}=16
Multiply 2 and 8 to get 16.
\frac{1}{9}x+\frac{1}{49}y=16
Divide each term of 49x+9y by 441 to get \frac{1}{9}x+\frac{1}{49}y.
x+y=200,\frac{1}{9}x+\frac{1}{49}y=16
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=200
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+200
Subtract y from both sides of the equation.
\frac{1}{9}\left(-y+200\right)+\frac{1}{49}y=16
Substitute -y+200 for x in the other equation, \frac{1}{9}x+\frac{1}{49}y=16.
-\frac{1}{9}y+\frac{200}{9}+\frac{1}{49}y=16
Multiply \frac{1}{9} times -y+200.
-\frac{40}{441}y+\frac{200}{9}=16
Add -\frac{y}{9} to \frac{y}{49}.
-\frac{40}{441}y=-\frac{56}{9}
Subtract \frac{200}{9} from both sides of the equation.
y=\frac{343}{5}
Divide both sides of the equation by -\frac{40}{441}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{343}{5}+200
Substitute \frac{343}{5} for y in x=-y+200. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{657}{5}
Add 200 to -\frac{343}{5}.
x=\frac{657}{5},y=\frac{343}{5}
The system is now solved.
\frac{x}{9}+\frac{y}{49}=2\times 8
Consider the second equation. Multiply both sides of the equation by 200, the least common multiple of 200,100.
\frac{49x}{441}+\frac{9y}{441}=2\times 8
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 49 is 441. Multiply \frac{x}{9} times \frac{49}{49}. Multiply \frac{y}{49} times \frac{9}{9}.
\frac{49x+9y}{441}=2\times 8
Since \frac{49x}{441} and \frac{9y}{441} have the same denominator, add them by adding their numerators.
\frac{49x+9y}{441}=16
Multiply 2 and 8 to get 16.
\frac{1}{9}x+\frac{1}{49}y=16
Divide each term of 49x+9y by 441 to get \frac{1}{9}x+\frac{1}{49}y.
x+y=200,\frac{1}{9}x+\frac{1}{49}y=16
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\\frac{1}{9}&\frac{1}{49}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\16\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\\frac{1}{9}&\frac{1}{49}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{1}{9}&\frac{1}{49}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{9}&\frac{1}{49}\end{matrix}\right))\left(\begin{matrix}200\\16\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\\frac{1}{9}&\frac{1}{49}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{9}&\frac{1}{49}\end{matrix}\right))\left(\begin{matrix}200\\16\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{1}{9}&\frac{1}{49}\end{matrix}\right))\left(\begin{matrix}200\\16\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{49}}{\frac{1}{49}-\frac{1}{9}}&-\frac{1}{\frac{1}{49}-\frac{1}{9}}\\-\frac{\frac{1}{9}}{\frac{1}{49}-\frac{1}{9}}&\frac{1}{\frac{1}{49}-\frac{1}{9}}\end{matrix}\right)\left(\begin{matrix}200\\16\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{40}&\frac{441}{40}\\\frac{49}{40}&-\frac{441}{40}\end{matrix}\right)\left(\begin{matrix}200\\16\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{40}\times 200+\frac{441}{40}\times 16\\\frac{49}{40}\times 200-\frac{441}{40}\times 16\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{657}{5}\\\frac{343}{5}\end{matrix}\right)
Do the arithmetic.
x=\frac{657}{5},y=\frac{343}{5}
Extract the matrix elements x and y.
\frac{x}{9}+\frac{y}{49}=2\times 8
Consider the second equation. Multiply both sides of the equation by 200, the least common multiple of 200,100.
\frac{49x}{441}+\frac{9y}{441}=2\times 8
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 49 is 441. Multiply \frac{x}{9} times \frac{49}{49}. Multiply \frac{y}{49} times \frac{9}{9}.
\frac{49x+9y}{441}=2\times 8
Since \frac{49x}{441} and \frac{9y}{441} have the same denominator, add them by adding their numerators.
\frac{49x+9y}{441}=16
Multiply 2 and 8 to get 16.
\frac{1}{9}x+\frac{1}{49}y=16
Divide each term of 49x+9y by 441 to get \frac{1}{9}x+\frac{1}{49}y.
x+y=200,\frac{1}{9}x+\frac{1}{49}y=16
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{9}x+\frac{1}{9}y=\frac{1}{9}\times 200,\frac{1}{9}x+\frac{1}{49}y=16
To make x and \frac{x}{9} equal, multiply all terms on each side of the first equation by \frac{1}{9} and all terms on each side of the second by 1.
\frac{1}{9}x+\frac{1}{9}y=\frac{200}{9},\frac{1}{9}x+\frac{1}{49}y=16
Simplify.
\frac{1}{9}x-\frac{1}{9}x+\frac{1}{9}y-\frac{1}{49}y=\frac{200}{9}-16
Subtract \frac{1}{9}x+\frac{1}{49}y=16 from \frac{1}{9}x+\frac{1}{9}y=\frac{200}{9} by subtracting like terms on each side of the equal sign.
\frac{1}{9}y-\frac{1}{49}y=\frac{200}{9}-16
Add \frac{x}{9} to -\frac{x}{9}. Terms \frac{x}{9} and -\frac{x}{9} cancel out, leaving an equation with only one variable that can be solved.
\frac{40}{441}y=\frac{200}{9}-16
Add \frac{y}{9} to -\frac{y}{49}.
\frac{40}{441}y=\frac{56}{9}
Add \frac{200}{9} to -16.
y=\frac{343}{5}
Divide both sides of the equation by \frac{40}{441}, which is the same as multiplying both sides by the reciprocal of the fraction.
\frac{1}{9}x+\frac{1}{49}\times \frac{343}{5}=16
Substitute \frac{343}{5} for y in \frac{1}{9}x+\frac{1}{49}y=16. Because the resulting equation contains only one variable, you can solve for x directly.
\frac{1}{9}x+\frac{7}{5}=16
Multiply \frac{1}{49} times \frac{343}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{1}{9}x=\frac{73}{5}
Subtract \frac{7}{5} from both sides of the equation.
x=\frac{657}{5}
Multiply both sides by 9.
x=\frac{657}{5},y=\frac{343}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}