\left\{ \begin{array} { l } { x + y = 20 } \\ { 80 x + 50 y = 1360 } \end{array} \right.
Solve for x, y
x=12
y=8
Graph
Share
Copied to clipboard
x+y=20,80x+50y=1360
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=20
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+20
Subtract y from both sides of the equation.
80\left(-y+20\right)+50y=1360
Substitute -y+20 for x in the other equation, 80x+50y=1360.
-80y+1600+50y=1360
Multiply 80 times -y+20.
-30y+1600=1360
Add -80y to 50y.
-30y=-240
Subtract 1600 from both sides of the equation.
y=8
Divide both sides by -30.
x=-8+20
Substitute 8 for y in x=-y+20. Because the resulting equation contains only one variable, you can solve for x directly.
x=12
Add 20 to -8.
x=12,y=8
The system is now solved.
x+y=20,80x+50y=1360
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\80&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\1360\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\80&50\end{matrix}\right))\left(\begin{matrix}1&1\\80&50\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\80&50\end{matrix}\right))\left(\begin{matrix}20\\1360\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\80&50\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\80&50\end{matrix}\right))\left(\begin{matrix}20\\1360\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\80&50\end{matrix}\right))\left(\begin{matrix}20\\1360\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{50}{50-80}&-\frac{1}{50-80}\\-\frac{80}{50-80}&\frac{1}{50-80}\end{matrix}\right)\left(\begin{matrix}20\\1360\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}&\frac{1}{30}\\\frac{8}{3}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}20\\1360\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{3}\times 20+\frac{1}{30}\times 1360\\\frac{8}{3}\times 20-\frac{1}{30}\times 1360\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
Do the arithmetic.
x=12,y=8
Extract the matrix elements x and y.
x+y=20,80x+50y=1360
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
80x+80y=80\times 20,80x+50y=1360
To make x and 80x equal, multiply all terms on each side of the first equation by 80 and all terms on each side of the second by 1.
80x+80y=1600,80x+50y=1360
Simplify.
80x-80x+80y-50y=1600-1360
Subtract 80x+50y=1360 from 80x+80y=1600 by subtracting like terms on each side of the equal sign.
80y-50y=1600-1360
Add 80x to -80x. Terms 80x and -80x cancel out, leaving an equation with only one variable that can be solved.
30y=1600-1360
Add 80y to -50y.
30y=240
Add 1600 to -1360.
y=8
Divide both sides by 30.
80x+50\times 8=1360
Substitute 8 for y in 80x+50y=1360. Because the resulting equation contains only one variable, you can solve for x directly.
80x+400=1360
Multiply 50 times 8.
80x=960
Subtract 400 from both sides of the equation.
x=12
Divide both sides by 80.
x=12,y=8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}