Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=1787,4x+3y=5792
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1787
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1787
Subtract y from both sides of the equation.
4\left(-y+1787\right)+3y=5792
Substitute -y+1787 for x in the other equation, 4x+3y=5792.
-4y+7148+3y=5792
Multiply 4 times -y+1787.
-y+7148=5792
Add -4y to 3y.
-y=-1356
Subtract 7148 from both sides of the equation.
y=1356
Divide both sides by -1.
x=-1356+1787
Substitute 1356 for y in x=-y+1787. Because the resulting equation contains only one variable, you can solve for x directly.
x=431
Add 1787 to -1356.
x=431,y=1356
The system is now solved.
x+y=1787,4x+3y=5792
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1787\\5792\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}1&1\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}1787\\5792\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\4&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}1787\\5792\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\4&3\end{matrix}\right))\left(\begin{matrix}1787\\5792\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4}&-\frac{1}{3-4}\\-\frac{4}{3-4}&\frac{1}{3-4}\end{matrix}\right)\left(\begin{matrix}1787\\5792\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&1\\4&-1\end{matrix}\right)\left(\begin{matrix}1787\\5792\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 1787+5792\\4\times 1787-5792\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}431\\1356\end{matrix}\right)
Do the arithmetic.
x=431,y=1356
Extract the matrix elements x and y.
x+y=1787,4x+3y=5792
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4x+4y=4\times 1787,4x+3y=5792
To make x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by 1.
4x+4y=7148,4x+3y=5792
Simplify.
4x-4x+4y-3y=7148-5792
Subtract 4x+3y=5792 from 4x+4y=7148 by subtracting like terms on each side of the equal sign.
4y-3y=7148-5792
Add 4x to -4x. Terms 4x and -4x cancel out, leaving an equation with only one variable that can be solved.
y=7148-5792
Add 4y to -3y.
y=1356
Add 7148 to -5792.
4x+3\times 1356=5792
Substitute 1356 for y in 4x+3y=5792. Because the resulting equation contains only one variable, you can solve for x directly.
4x+4068=5792
Multiply 3 times 1356.
4x=1724
Subtract 4068 from both sides of the equation.
x=431
Divide both sides by 4.
x=431,y=1356
The system is now solved.