\left\{ \begin{array} { l } { x + y = 16 } \\ { x ^ { 2 } + y ^ { 2 } = 64 } \end{array} \right.
Solve for x, y (complex solution)
x=8+4\sqrt{2}i\approx 8+5.656854249i\text{, }y=-4\sqrt{2}i+8\approx 8-5.656854249i
x=-4\sqrt{2}i+8\approx 8-5.656854249i\text{, }y=8+4\sqrt{2}i\approx 8+5.656854249i
Graph
Share
Copied to clipboard
x+y=16
Solve x+y=16 for x by isolating x on the left hand side of the equal sign.
x=-y+16
Subtract y from both sides of the equation.
y^{2}+\left(-y+16\right)^{2}=64
Substitute -y+16 for x in the other equation, y^{2}+x^{2}=64.
y^{2}+y^{2}-32y+256=64
Square -y+16.
2y^{2}-32y+256=64
Add y^{2} to y^{2}.
2y^{2}-32y+192=0
Subtract 64 from both sides of the equation.
y=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 192}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 16\left(-1\right)\times 2 for b, and 192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 192}}{2\times 2}
Square 1\times 16\left(-1\right)\times 2.
y=\frac{-\left(-32\right)±\sqrt{1024-8\times 192}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-32\right)±\sqrt{1024-1536}}{2\times 2}
Multiply -8 times 192.
y=\frac{-\left(-32\right)±\sqrt{-512}}{2\times 2}
Add 1024 to -1536.
y=\frac{-\left(-32\right)±16\sqrt{2}i}{2\times 2}
Take the square root of -512.
y=\frac{32±16\sqrt{2}i}{2\times 2}
The opposite of 1\times 16\left(-1\right)\times 2 is 32.
y=\frac{32±16\sqrt{2}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{32+2^{\frac{9}{2}}i}{4}
Now solve the equation y=\frac{32±16\sqrt{2}i}{4} when ± is plus. Add 32 to 16i\sqrt{2}.
y=8+2^{\frac{5}{2}}i
Divide 32+i\times 2^{\frac{9}{2}} by 4.
y=\frac{-2^{\frac{9}{2}}i+32}{4}
Now solve the equation y=\frac{32±16\sqrt{2}i}{4} when ± is minus. Subtract 16i\sqrt{2} from 32.
y=-2^{\frac{5}{2}}i+8
Divide 32-i\times 2^{\frac{9}{2}} by 4.
x=-\left(8+2^{\frac{5}{2}}i\right)+16
There are two solutions for y: 8+i\times 2^{\frac{5}{2}} and 8-i\times 2^{\frac{5}{2}}. Substitute 8+i\times 2^{\frac{5}{2}} for y in the equation x=-y+16 to find the corresponding solution for x that satisfies both equations.
x=-\left(-2^{\frac{5}{2}}i+8\right)+16
Now substitute 8-i\times 2^{\frac{5}{2}} for y in the equation x=-y+16 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(8+2^{\frac{5}{2}}i\right)+16,y=8+2^{\frac{5}{2}}i\text{ or }x=-\left(-2^{\frac{5}{2}}i+8\right)+16,y=-2^{\frac{5}{2}}i+8
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}