Skip to main content
Solve for x, y (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=16
Solve x+y=16 for x by isolating x on the left hand side of the equal sign.
x=-y+16
Subtract y from both sides of the equation.
y^{2}+\left(-y+16\right)^{2}=64
Substitute -y+16 for x in the other equation, y^{2}+x^{2}=64.
y^{2}+y^{2}-32y+256=64
Square -y+16.
2y^{2}-32y+256=64
Add y^{2} to y^{2}.
2y^{2}-32y+192=0
Subtract 64 from both sides of the equation.
y=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 192}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times 16\left(-1\right)\times 2 for b, and 192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 192}}{2\times 2}
Square 1\times 16\left(-1\right)\times 2.
y=\frac{-\left(-32\right)±\sqrt{1024-8\times 192}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-32\right)±\sqrt{1024-1536}}{2\times 2}
Multiply -8 times 192.
y=\frac{-\left(-32\right)±\sqrt{-512}}{2\times 2}
Add 1024 to -1536.
y=\frac{-\left(-32\right)±16\sqrt{2}i}{2\times 2}
Take the square root of -512.
y=\frac{32±16\sqrt{2}i}{2\times 2}
The opposite of 1\times 16\left(-1\right)\times 2 is 32.
y=\frac{32±16\sqrt{2}i}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{32+2^{\frac{9}{2}}i}{4}
Now solve the equation y=\frac{32±16\sqrt{2}i}{4} when ± is plus. Add 32 to 16i\sqrt{2}.
y=8+2^{\frac{5}{2}}i
Divide 32+i\times 2^{\frac{9}{2}} by 4.
y=\frac{-2^{\frac{9}{2}}i+32}{4}
Now solve the equation y=\frac{32±16\sqrt{2}i}{4} when ± is minus. Subtract 16i\sqrt{2} from 32.
y=-2^{\frac{5}{2}}i+8
Divide 32-i\times 2^{\frac{9}{2}} by 4.
x=-\left(8+2^{\frac{5}{2}}i\right)+16
There are two solutions for y: 8+i\times 2^{\frac{5}{2}} and 8-i\times 2^{\frac{5}{2}}. Substitute 8+i\times 2^{\frac{5}{2}} for y in the equation x=-y+16 to find the corresponding solution for x that satisfies both equations.
x=-\left(-2^{\frac{5}{2}}i+8\right)+16
Now substitute 8-i\times 2^{\frac{5}{2}} for y in the equation x=-y+16 and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(8+2^{\frac{5}{2}}i\right)+16,y=8+2^{\frac{5}{2}}i\text{ or }x=-\left(-2^{\frac{5}{2}}i+8\right)+16,y=-2^{\frac{5}{2}}i+8
The system is now solved.