\left\{ \begin{array} { l } { x + y = 16 } \\ { x + 2 + 3 ( y + 2 ) = 34 + 2 } \end{array} \right.
Solve for x, y
x=10
y=6
Graph
Share
Copied to clipboard
x+y=16,x+3\left(y+2\right)+2=36
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=16
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+16
Subtract y from both sides of the equation.
-y+16+3\left(y+2\right)+2=36
Substitute -y+16 for x in the other equation, x+3\left(y+2\right)+2=36.
-y+16+3y+6+2=36
Multiply 3 times y+2.
2y+16+6+2=36
Add -y to 3y.
2y+22+2=36
Add 16 to 6.
2y+24=36
Add 22 to 2.
2y=12
Subtract 24 from both sides of the equation.
y=6
Divide both sides by 2.
x=-6+16
Substitute 6 for y in x=-y+16. Because the resulting equation contains only one variable, you can solve for x directly.
x=10
Add 16 to -6.
x=10,y=6
The system is now solved.
x+y=16,x+3\left(y+2\right)+2=36
Put the equations in standard form and then use matrices to solve the system of equations.
x+3\left(y+2\right)+2=36
Simplify the second equation to put it in standard form.
x+3y+6+2=36
Multiply 3 times y+2.
x+3y+8=36
Add 6 to 2.
x+3y=28
Subtract 8 from both sides of the equation.
\left(\begin{matrix}1&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\28\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}1&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}16\\28\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}16\\28\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&3\end{matrix}\right))\left(\begin{matrix}16\\28\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-1}&-\frac{1}{3-1}\\-\frac{1}{3-1}&\frac{1}{3-1}\end{matrix}\right)\left(\begin{matrix}16\\28\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}16\\28\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 16-\frac{1}{2}\times 28\\-\frac{1}{2}\times 16+\frac{1}{2}\times 28\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\6\end{matrix}\right)
Do the arithmetic.
x=10,y=6
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}