Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=150,10x+20y=20
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=150
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+150
Subtract y from both sides of the equation.
10\left(-y+150\right)+20y=20
Substitute -y+150 for x in the other equation, 10x+20y=20.
-10y+1500+20y=20
Multiply 10 times -y+150.
10y+1500=20
Add -10y to 20y.
10y=-1480
Subtract 1500 from both sides of the equation.
y=-148
Divide both sides by 10.
x=-\left(-148\right)+150
Substitute -148 for y in x=-y+150. Because the resulting equation contains only one variable, you can solve for x directly.
x=148+150
Multiply -1 times -148.
x=298
Add 150 to 148.
x=298,y=-148
The system is now solved.
x+y=150,10x+20y=20
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\10&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}150\\20\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}1&1\\10&20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}150\\20\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\10&20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}150\\20\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\10&20\end{matrix}\right))\left(\begin{matrix}150\\20\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{20-10}&-\frac{1}{20-10}\\-\frac{10}{20-10}&\frac{1}{20-10}\end{matrix}\right)\left(\begin{matrix}150\\20\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{10}\\-1&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}150\\20\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 150-\frac{1}{10}\times 20\\-150+\frac{1}{10}\times 20\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}298\\-148\end{matrix}\right)
Do the arithmetic.
x=298,y=-148
Extract the matrix elements x and y.
x+y=150,10x+20y=20
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
10x+10y=10\times 150,10x+20y=20
To make x and 10x equal, multiply all terms on each side of the first equation by 10 and all terms on each side of the second by 1.
10x+10y=1500,10x+20y=20
Simplify.
10x-10x+10y-20y=1500-20
Subtract 10x+20y=20 from 10x+10y=1500 by subtracting like terms on each side of the equal sign.
10y-20y=1500-20
Add 10x to -10x. Terms 10x and -10x cancel out, leaving an equation with only one variable that can be solved.
-10y=1500-20
Add 10y to -20y.
-10y=1480
Add 1500 to -20.
y=-148
Divide both sides by -10.
10x+20\left(-148\right)=20
Substitute -148 for y in 10x+20y=20. Because the resulting equation contains only one variable, you can solve for x directly.
10x-2960=20
Multiply 20 times -148.
10x=2980
Add 2960 to both sides of the equation.
x=298
Divide both sides by 10.
x=298,y=-148
The system is now solved.