\left\{ \begin{array} { l } { x + y = 15 } \\ { 10 x = 8 - 2 } \\ { 15 x = z + 5 } \end{array} \right.
Solve for x, y, z
x=\frac{3}{5}=0.6
y = \frac{72}{5} = 14\frac{2}{5} = 14.4
z=4
Share
Copied to clipboard
10x=6
Consider the second equation. Subtract 2 from 8 to get 6.
x=\frac{6}{10}
Divide both sides by 10.
x=\frac{3}{5}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
15\times \frac{3}{5}=z+5
Consider the third equation. Insert the known values of variables into the equation.
9=z+5
Multiply 15 and \frac{3}{5} to get 9.
z+5=9
Swap sides so that all variable terms are on the left hand side.
z=9-5
Subtract 5 from both sides.
z=4
Subtract 5 from 9 to get 4.
\frac{3}{5}+y=15
Consider the first equation. Insert the known values of variables into the equation.
y=15-\frac{3}{5}
Subtract \frac{3}{5} from both sides.
y=\frac{72}{5}
Subtract \frac{3}{5} from 15 to get \frac{72}{5}.
x=\frac{3}{5} y=\frac{72}{5} z=4
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}