\left\{ \begin{array} { l } { x + y = 1004 } \\ { 0.9 x + 1.4 y = 120 } \end{array} \right.
Solve for x, y
x=2571.2
y=-1567.2
Graph
Share
Copied to clipboard
x+y=1004,0.9x+1.4y=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1004
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1004
Subtract y from both sides of the equation.
0.9\left(-y+1004\right)+1.4y=120
Substitute -y+1004 for x in the other equation, 0.9x+1.4y=120.
-0.9y+903.6+1.4y=120
Multiply 0.9 times -y+1004.
0.5y+903.6=120
Add -\frac{9y}{10} to \frac{7y}{5}.
0.5y=-783.6
Subtract 903.6 from both sides of the equation.
y=-1567.2
Multiply both sides by 2.
x=-\left(-1567.2\right)+1004
Substitute -1567.2 for y in x=-y+1004. Because the resulting equation contains only one variable, you can solve for x directly.
x=1567.2+1004
Multiply -1 times -1567.2.
x=2571.2
Add 1004 to 1567.2.
x=2571.2,y=-1567.2
The system is now solved.
x+y=1004,0.9x+1.4y=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1004\\120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1004\\120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1004\\120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1004\\120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1.4}{1.4-0.9}&-\frac{1}{1.4-0.9}\\-\frac{0.9}{1.4-0.9}&\frac{1}{1.4-0.9}\end{matrix}\right)\left(\begin{matrix}1004\\120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2.8&-2\\-1.8&2\end{matrix}\right)\left(\begin{matrix}1004\\120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2.8\times 1004-2\times 120\\-1.8\times 1004+2\times 120\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2571.2\\-1567.2\end{matrix}\right)
Do the arithmetic.
x=2571.2,y=-1567.2
Extract the matrix elements x and y.
x+y=1004,0.9x+1.4y=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.9x+0.9y=0.9\times 1004,0.9x+1.4y=120
To make x and \frac{9x}{10} equal, multiply all terms on each side of the first equation by 0.9 and all terms on each side of the second by 1.
0.9x+0.9y=903.6,0.9x+1.4y=120
Simplify.
0.9x-0.9x+0.9y-1.4y=903.6-120
Subtract 0.9x+1.4y=120 from 0.9x+0.9y=903.6 by subtracting like terms on each side of the equal sign.
0.9y-1.4y=903.6-120
Add \frac{9x}{10} to -\frac{9x}{10}. Terms \frac{9x}{10} and -\frac{9x}{10} cancel out, leaving an equation with only one variable that can be solved.
-0.5y=903.6-120
Add \frac{9y}{10} to -\frac{7y}{5}.
-0.5y=783.6
Add 903.6 to -120.
y=-1567.2
Multiply both sides by -2.
0.9x+1.4\left(-1567.2\right)=120
Substitute -1567.2 for y in 0.9x+1.4y=120. Because the resulting equation contains only one variable, you can solve for x directly.
0.9x-2194.08=120
Multiply 1.4 times -1567.2 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
0.9x=2314.08
Add 2194.08 to both sides of the equation.
x=2571.2
Divide both sides of the equation by 0.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x=2571.2,y=-1567.2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}