\left\{ \begin{array} { l } { x + y = 1000 } \\ { 0,9 x + 1.4 y = 120 } \end{array} \right.
Solve for x, y
x=2560
y=-1560
Graph
Share
Copied to clipboard
x+y=1000,0.9x+1.4y=120
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=1000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+1000
Subtract y from both sides of the equation.
0.9\left(-y+1000\right)+1.4y=120
Substitute -y+1000 for x in the other equation, 0.9x+1.4y=120.
-0.9y+900+1.4y=120
Multiply 0.9 times -y+1000.
0.5y+900=120
Add -\frac{9y}{10} to \frac{7y}{5}.
0.5y=-780
Subtract 900 from both sides of the equation.
y=-1560
Multiply both sides by 2.
x=-\left(-1560\right)+1000
Substitute -1560 for y in x=-y+1000. Because the resulting equation contains only one variable, you can solve for x directly.
x=1560+1000
Multiply -1 times -1560.
x=2560
Add 1000 to 1560.
x=2560,y=-1560
The system is now solved.
x+y=1000,0.9x+1.4y=120
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1000\\120\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1000\\120\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1000\\120\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.9&1.4\end{matrix}\right))\left(\begin{matrix}1000\\120\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1.4}{1.4-0.9}&-\frac{1}{1.4-0.9}\\-\frac{0.9}{1.4-0.9}&\frac{1}{1.4-0.9}\end{matrix}\right)\left(\begin{matrix}1000\\120\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2.8&-2\\-1.8&2\end{matrix}\right)\left(\begin{matrix}1000\\120\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2.8\times 1000-2\times 120\\-1.8\times 1000+2\times 120\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2560\\-1560\end{matrix}\right)
Do the arithmetic.
x=2560,y=-1560
Extract the matrix elements x and y.
x+y=1000,0.9x+1.4y=120
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.9x+0.9y=0.9\times 1000,0.9x+1.4y=120
To make x and \frac{9x}{10} equal, multiply all terms on each side of the first equation by 0.9 and all terms on each side of the second by 1.
0.9x+0.9y=900,0.9x+1.4y=120
Simplify.
0.9x-0.9x+0.9y-1.4y=900-120
Subtract 0.9x+1.4y=120 from 0.9x+0.9y=900 by subtracting like terms on each side of the equal sign.
0.9y-1.4y=900-120
Add \frac{9x}{10} to -\frac{9x}{10}. Terms \frac{9x}{10} and -\frac{9x}{10} cancel out, leaving an equation with only one variable that can be solved.
-0.5y=900-120
Add \frac{9y}{10} to -\frac{7y}{5}.
-0.5y=780
Add 900 to -120.
y=-1560
Multiply both sides by -2.
0.9x+1.4\left(-1560\right)=120
Substitute -1560 for y in 0.9x+1.4y=120. Because the resulting equation contains only one variable, you can solve for x directly.
0.9x-2184=120
Multiply 1.4 times -1560.
0.9x=2304
Add 2184 to both sides of the equation.
x=2560
Divide both sides of the equation by 0.9, which is the same as multiplying both sides by the reciprocal of the fraction.
x=2560,y=-1560
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}