\left\{ \begin{array} { l } { x + y = 100 } \\ { 8.25 x + 6.25 y = 695 } \end{array} \right.
Solve for x, y
x=35
y=65
Graph
Share
Copied to clipboard
x+y=100,8.25x+6.25y=695
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=100
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+100
Subtract y from both sides of the equation.
8.25\left(-y+100\right)+6.25y=695
Substitute -y+100 for x in the other equation, 8.25x+6.25y=695.
-8.25y+825+6.25y=695
Multiply 8.25 times -y+100.
-2y+825=695
Add -\frac{33y}{4} to \frac{25y}{4}.
-2y=-130
Subtract 825 from both sides of the equation.
y=65
Divide both sides by -2.
x=-65+100
Substitute 65 for y in x=-y+100. Because the resulting equation contains only one variable, you can solve for x directly.
x=35
Add 100 to -65.
x=35,y=65
The system is now solved.
x+y=100,8.25x+6.25y=695
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\8.25&6.25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\695\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\8.25&6.25\end{matrix}\right))\left(\begin{matrix}1&1\\8.25&6.25\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8.25&6.25\end{matrix}\right))\left(\begin{matrix}100\\695\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\8.25&6.25\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8.25&6.25\end{matrix}\right))\left(\begin{matrix}100\\695\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\8.25&6.25\end{matrix}\right))\left(\begin{matrix}100\\695\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6.25}{6.25-8.25}&-\frac{1}{6.25-8.25}\\-\frac{8.25}{6.25-8.25}&\frac{1}{6.25-8.25}\end{matrix}\right)\left(\begin{matrix}100\\695\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{25}{8}&\frac{1}{2}\\\frac{33}{8}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}100\\695\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{25}{8}\times 100+\frac{1}{2}\times 695\\\frac{33}{8}\times 100-\frac{1}{2}\times 695\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\65\end{matrix}\right)
Do the arithmetic.
x=35,y=65
Extract the matrix elements x and y.
x+y=100,8.25x+6.25y=695
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8.25x+8.25y=8.25\times 100,8.25x+6.25y=695
To make x and \frac{33x}{4} equal, multiply all terms on each side of the first equation by 8.25 and all terms on each side of the second by 1.
8.25x+8.25y=825,8.25x+6.25y=695
Simplify.
8.25x-8.25x+8.25y-6.25y=825-695
Subtract 8.25x+6.25y=695 from 8.25x+8.25y=825 by subtracting like terms on each side of the equal sign.
8.25y-6.25y=825-695
Add \frac{33x}{4} to -\frac{33x}{4}. Terms \frac{33x}{4} and -\frac{33x}{4} cancel out, leaving an equation with only one variable that can be solved.
2y=825-695
Add \frac{33y}{4} to -\frac{25y}{4}.
2y=130
Add 825 to -695.
y=65
Divide both sides by 2.
8.25x+6.25\times 65=695
Substitute 65 for y in 8.25x+6.25y=695. Because the resulting equation contains only one variable, you can solve for x directly.
8.25x+406.25=695
Multiply 6.25 times 65.
8.25x=288.75
Subtract 406.25 from both sides of the equation.
x=35
Divide both sides of the equation by 8.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x=35,y=65
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}