\left\{ \begin{array} { l } { x + y = 100 } \\ { 62.5 x + 48.7 x = 50 } \end{array} \right.
Solve for x, y
x=\frac{125}{278}\approx 0.449640288
y = \frac{27675}{278} = 99\frac{153}{278} \approx 99.550359712
Graph
Share
Copied to clipboard
111.2x=50
Consider the second equation. Combine 62.5x and 48.7x to get 111.2x.
x=\frac{50}{111.2}
Divide both sides by 111.2.
x=\frac{500}{1112}
Expand \frac{50}{111.2} by multiplying both numerator and the denominator by 10.
x=\frac{125}{278}
Reduce the fraction \frac{500}{1112} to lowest terms by extracting and canceling out 4.
\frac{125}{278}+y=100
Consider the first equation. Insert the known values of variables into the equation.
y=100-\frac{125}{278}
Subtract \frac{125}{278} from both sides.
y=\frac{27675}{278}
Subtract \frac{125}{278} from 100 to get \frac{27675}{278}.
x=\frac{125}{278} y=\frac{27675}{278}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}