Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=\frac{2}{3},y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=\frac{2}{3}
Solve x+y=\frac{2}{3} for x by isolating x on the left hand side of the equal sign.
x=-y+\frac{2}{3}
Subtract y from both sides of the equation.
y^{2}+\left(-y+\frac{2}{3}\right)^{2}=1
Substitute -y+\frac{2}{3} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+y^{2}-\frac{4}{3}y+\frac{4}{9}=1
Square -y+\frac{2}{3}.
2y^{2}-\frac{4}{3}y+\frac{4}{9}=1
Add y^{2} to y^{2}.
2y^{2}-\frac{4}{3}y-\frac{5}{9}=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times 2\left(-\frac{5}{9}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times \frac{2}{3}\left(-1\right)\times 2 for b, and -\frac{5}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times 2\left(-\frac{5}{9}\right)}}{2\times 2}
Square 1\times \frac{2}{3}\left(-1\right)\times 2.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-8\left(-\frac{5}{9}\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16+40}{9}}}{2\times 2}
Multiply -8 times -\frac{5}{9}.
y=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{56}{9}}}{2\times 2}
Add \frac{16}{9} to \frac{40}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{4}{3}\right)±\frac{2\sqrt{14}}{3}}{2\times 2}
Take the square root of \frac{56}{9}.
y=\frac{\frac{4}{3}±\frac{2\sqrt{14}}{3}}{2\times 2}
The opposite of 1\times \frac{2}{3}\left(-1\right)\times 2 is \frac{4}{3}.
y=\frac{\frac{4}{3}±\frac{2\sqrt{14}}{3}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{2\sqrt{14}+4}{3\times 4}
Now solve the equation y=\frac{\frac{4}{3}±\frac{2\sqrt{14}}{3}}{4} when ± is plus. Add \frac{4}{3} to \frac{2\sqrt{14}}{3}.
y=\frac{\sqrt{14}}{6}+\frac{1}{3}
Divide \frac{4+2\sqrt{14}}{3} by 4.
y=\frac{4-2\sqrt{14}}{3\times 4}
Now solve the equation y=\frac{\frac{4}{3}±\frac{2\sqrt{14}}{3}}{4} when ± is minus. Subtract \frac{2\sqrt{14}}{3} from \frac{4}{3}.
y=-\frac{\sqrt{14}}{6}+\frac{1}{3}
Divide \frac{4-2\sqrt{14}}{3} by 4.
x=-\left(\frac{\sqrt{14}}{6}+\frac{1}{3}\right)+\frac{2}{3}
There are two solutions for y: \frac{1}{3}+\frac{\sqrt{14}}{6} and \frac{1}{3}-\frac{\sqrt{14}}{6}. Substitute \frac{1}{3}+\frac{\sqrt{14}}{6} for y in the equation x=-y+\frac{2}{3} to find the corresponding solution for x that satisfies both equations.
x=-\left(-\frac{\sqrt{14}}{6}+\frac{1}{3}\right)+\frac{2}{3}
Now substitute \frac{1}{3}-\frac{\sqrt{14}}{6} for y in the equation x=-y+\frac{2}{3} and solve to find the corresponding solution for x that satisfies both equations.
x=-\left(\frac{\sqrt{14}}{6}+\frac{1}{3}\right)+\frac{2}{3},y=\frac{\sqrt{14}}{6}+\frac{1}{3}\text{ or }x=-\left(-\frac{\sqrt{14}}{6}+\frac{1}{3}\right)+\frac{2}{3},y=-\frac{\sqrt{14}}{6}+\frac{1}{3}
The system is now solved.