Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=\frac{1}{5},y^{2}+x^{2}=1
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=\frac{1}{5}
Solve x+y=\frac{1}{5} for x by isolating x on the left hand side of the equal sign.
x=-y+\frac{1}{5}
Subtract y from both sides of the equation.
y^{2}+\left(-y+\frac{1}{5}\right)^{2}=1
Substitute -y+\frac{1}{5} for x in the other equation, y^{2}+x^{2}=1.
y^{2}+y^{2}-\frac{2}{5}y+\frac{1}{25}=1
Square -y+\frac{1}{5}.
2y^{2}-\frac{2}{5}y+\frac{1}{25}=1
Add y^{2} to y^{2}.
2y^{2}-\frac{2}{5}y-\frac{24}{25}=0
Subtract 1 from both sides of the equation.
y=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\left(-\frac{2}{5}\right)^{2}-4\times 2\left(-\frac{24}{25}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+1\left(-1\right)^{2} for a, 1\times \frac{1}{5}\left(-1\right)\times 2 for b, and -\frac{24}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{4}{25}-4\times 2\left(-\frac{24}{25}\right)}}{2\times 2}
Square 1\times \frac{1}{5}\left(-1\right)\times 2.
y=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{4}{25}-8\left(-\frac{24}{25}\right)}}{2\times 2}
Multiply -4 times 1+1\left(-1\right)^{2}.
y=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{4+192}{25}}}{2\times 2}
Multiply -8 times -\frac{24}{25}.
y=\frac{-\left(-\frac{2}{5}\right)±\sqrt{\frac{196}{25}}}{2\times 2}
Add \frac{4}{25} to \frac{192}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{-\left(-\frac{2}{5}\right)±\frac{14}{5}}{2\times 2}
Take the square root of \frac{196}{25}.
y=\frac{\frac{2}{5}±\frac{14}{5}}{2\times 2}
The opposite of 1\times \frac{1}{5}\left(-1\right)\times 2 is \frac{2}{5}.
y=\frac{\frac{2}{5}±\frac{14}{5}}{4}
Multiply 2 times 1+1\left(-1\right)^{2}.
y=\frac{\frac{16}{5}}{4}
Now solve the equation y=\frac{\frac{2}{5}±\frac{14}{5}}{4} when ± is plus. Add \frac{2}{5} to \frac{14}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=\frac{4}{5}
Divide \frac{16}{5} by 4.
y=-\frac{\frac{12}{5}}{4}
Now solve the equation y=\frac{\frac{2}{5}±\frac{14}{5}}{4} when ± is minus. Subtract \frac{14}{5} from \frac{2}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
y=-\frac{3}{5}
Divide -\frac{12}{5} by 4.
x=-\frac{4}{5}+\frac{1}{5}
There are two solutions for y: \frac{4}{5} and -\frac{3}{5}. Substitute \frac{4}{5} for y in the equation x=-y+\frac{1}{5} to find the corresponding solution for x that satisfies both equations.
x=\frac{-4+1}{5}
Multiply -1 times \frac{4}{5}.
x=-\frac{3}{5}
Add -\frac{4}{5} to \frac{1}{5}.
x=-\left(-\frac{3}{5}\right)+\frac{1}{5}
Now substitute -\frac{3}{5} for y in the equation x=-y+\frac{1}{5} and solve to find the corresponding solution for x that satisfies both equations.
x=\frac{3+1}{5}
Multiply -1 times -\frac{3}{5}.
x=\frac{4}{5}
Add -\left(-\frac{3}{5}\right) to \frac{1}{5}.
x=-\frac{3}{5},y=\frac{4}{5}\text{ or }x=\frac{4}{5},y=-\frac{3}{5}
The system is now solved.