Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-y+\alpha
Solve x+y=\alpha for x.
-y+\alpha +z=\beta
Substitute -y+\alpha for x in the equation x+z=\beta .
y=\alpha +z-\beta z=-y+\gamma
Solve the second equation for y and the third equation for z.
z=-\left(\alpha +z-\beta \right)+\gamma
Substitute \alpha +z-\beta for y in the equation z=-y+\gamma .
z=-\frac{1}{2}\alpha +\frac{1}{2}\beta +\frac{1}{2}\gamma
Solve z=-\left(\alpha +z-\beta \right)+\gamma for z.
y=\alpha -\frac{1}{2}\alpha +\frac{1}{2}\beta +\frac{1}{2}\gamma -\beta
Substitute -\frac{1}{2}\alpha +\frac{1}{2}\beta +\frac{1}{2}\gamma for z in the equation y=\alpha +z-\beta .
y=\frac{1}{2}\alpha -\frac{1}{2}\beta +\frac{1}{2}\gamma
Calculate y from y=\alpha -\frac{1}{2}\alpha +\frac{1}{2}\beta +\frac{1}{2}\gamma -\beta .
x=-\left(\frac{1}{2}\alpha -\frac{1}{2}\beta +\frac{1}{2}\gamma \right)+\alpha
Substitute \frac{1}{2}\alpha -\frac{1}{2}\beta +\frac{1}{2}\gamma for y in the equation x=-y+\alpha .
x=\frac{1}{2}\alpha +\frac{1}{2}\beta -\frac{1}{2}\gamma
Calculate x from x=-\left(\frac{1}{2}\alpha -\frac{1}{2}\beta +\frac{1}{2}\gamma \right)+\alpha .
x=\frac{1}{2}\alpha +\frac{1}{2}\beta -\frac{1}{2}\gamma y=\frac{1}{2}\alpha -\frac{1}{2}\beta +\frac{1}{2}\gamma z=-\frac{1}{2}\alpha +\frac{1}{2}\beta +\frac{1}{2}\gamma
The system is now solved.