\left\{ \begin{array} { l } { x + y + z = 525 } \\ { 23 x + 30 y + 40 z = 1250 } \\ { x + 2 y + 4 z = 596 } \end{array} \right.
Solve for x, y, z
x=6115
y = -\frac{16841}{2} = -8420\frac{1}{2} = -8420.5
z = \frac{5661}{2} = 2830\frac{1}{2} = 2830.5
Share
Copied to clipboard
x=-y-z+525
Solve x+y+z=525 for x.
23\left(-y-z+525\right)+30y+40z=1250 -y-z+525+2y+4z=596
Substitute -y-z+525 for x in the second and third equation.
y=-\frac{17}{7}z-\frac{10825}{7} z=-\frac{1}{3}y+\frac{71}{3}
Solve these equations for y and z respectively.
z=-\frac{1}{3}\left(-\frac{17}{7}z-\frac{10825}{7}\right)+\frac{71}{3}
Substitute -\frac{17}{7}z-\frac{10825}{7} for y in the equation z=-\frac{1}{3}y+\frac{71}{3}.
z=\frac{5661}{2}
Solve z=-\frac{1}{3}\left(-\frac{17}{7}z-\frac{10825}{7}\right)+\frac{71}{3} for z.
y=-\frac{17}{7}\times \frac{5661}{2}-\frac{10825}{7}
Substitute \frac{5661}{2} for z in the equation y=-\frac{17}{7}z-\frac{10825}{7}.
y=-\frac{16841}{2}
Calculate y from y=-\frac{17}{7}\times \frac{5661}{2}-\frac{10825}{7}.
x=-\left(-\frac{16841}{2}\right)-\frac{5661}{2}+525
Substitute -\frac{16841}{2} for y and \frac{5661}{2} for z in the equation x=-y-z+525.
x=6115
Calculate x from x=-\left(-\frac{16841}{2}\right)-\frac{5661}{2}+525.
x=6115 y=-\frac{16841}{2} z=\frac{5661}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}