\left\{ \begin{array} { l } { x + y + z = 23 } \\ { x - y = 1 } \\ { 2 x + y - 2 = 20 } \end{array} \right.
Solve for x, y, z
x = \frac{23}{3} = 7\frac{2}{3} \approx 7.666666667
y = \frac{20}{3} = 6\frac{2}{3} \approx 6.666666667
z = \frac{26}{3} = 8\frac{2}{3} \approx 8.666666667
Share
Copied to clipboard
x=-y-z+23
Solve x+y+z=23 for x.
-y-z+23-y=1 2\left(-y-z+23\right)+y-2=20
Substitute -y-z+23 for x in the second and third equation.
y=-\frac{1}{2}z+11 z=12-\frac{1}{2}y
Solve these equations for y and z respectively.
z=12-\frac{1}{2}\left(-\frac{1}{2}z+11\right)
Substitute -\frac{1}{2}z+11 for y in the equation z=12-\frac{1}{2}y.
z=\frac{26}{3}
Solve z=12-\frac{1}{2}\left(-\frac{1}{2}z+11\right) for z.
y=-\frac{1}{2}\times \frac{26}{3}+11
Substitute \frac{26}{3} for z in the equation y=-\frac{1}{2}z+11.
y=\frac{20}{3}
Calculate y from y=-\frac{1}{2}\times \frac{26}{3}+11.
x=-\frac{20}{3}-\frac{26}{3}+23
Substitute \frac{20}{3} for y and \frac{26}{3} for z in the equation x=-y-z+23.
x=\frac{23}{3}
Calculate x from x=-\frac{20}{3}-\frac{26}{3}+23.
x=\frac{23}{3} y=\frac{20}{3} z=\frac{26}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}