\left\{ \begin{array} { l } { x + y + z = 201 } \\ { y = \frac { 1 } { 3 } x + 60 } \\ { z = \frac { 1 } { 3 } y + 30 } \end{array} \right.
Solve for x, y, z
x=63
y=81
z=57
Share
Copied to clipboard
y=\frac{1}{3}x+60 x+y+z=201 z=\frac{1}{3}y+30
Reorder the equations.
x+\frac{1}{3}x+60+z=201 z=\frac{1}{3}\left(\frac{1}{3}x+60\right)+30
Substitute \frac{1}{3}x+60 for y in the second and third equation.
x=\frac{423}{4}-\frac{3}{4}z z=50+\frac{1}{9}x
Solve these equations for x and z respectively.
z=50+\frac{1}{9}\left(\frac{423}{4}-\frac{3}{4}z\right)
Substitute \frac{423}{4}-\frac{3}{4}z for x in the equation z=50+\frac{1}{9}x.
z=57
Solve z=50+\frac{1}{9}\left(\frac{423}{4}-\frac{3}{4}z\right) for z.
x=\frac{423}{4}-\frac{3}{4}\times 57
Substitute 57 for z in the equation x=\frac{423}{4}-\frac{3}{4}z.
x=63
Calculate x from x=\frac{423}{4}-\frac{3}{4}\times 57.
y=\frac{1}{3}\times 63+60
Substitute 63 for x in the equation y=\frac{1}{3}x+60.
y=81
Calculate y from y=\frac{1}{3}\times 63+60.
x=63 y=81 z=57
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}