\left\{ \begin{array} { l } { x + y + z = 20 } \\ { x = 2 y + 1 } \\ { \frac { y } { 3 } = \frac { z } { 2 } } \end{array} \right.
Solve for x, y, z
x = \frac{125}{11} = 11\frac{4}{11} \approx 11.363636364
y = \frac{57}{11} = 5\frac{2}{11} \approx 5.181818182
z = \frac{38}{11} = 3\frac{5}{11} \approx 3.454545455
Share
Copied to clipboard
x+y+z=20 x=2y+1 2y=3z
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=2y+1 x+y+z=20 2y=3z
Reorder the equations.
2y+1+y+z=20
Substitute 2y+1 for x in the equation x+y+z=20.
y=\frac{19}{3}-\frac{1}{3}z z=\frac{2}{3}y
Solve the second equation for y and the third equation for z.
z=\frac{2}{3}\left(\frac{19}{3}-\frac{1}{3}z\right)
Substitute \frac{19}{3}-\frac{1}{3}z for y in the equation z=\frac{2}{3}y.
z=\frac{38}{11}
Solve z=\frac{2}{3}\left(\frac{19}{3}-\frac{1}{3}z\right) for z.
y=\frac{19}{3}-\frac{1}{3}\times \frac{38}{11}
Substitute \frac{38}{11} for z in the equation y=\frac{19}{3}-\frac{1}{3}z.
y=\frac{57}{11}
Calculate y from y=\frac{19}{3}-\frac{1}{3}\times \frac{38}{11}.
x=2\times \frac{57}{11}+1
Substitute \frac{57}{11} for y in the equation x=2y+1.
x=\frac{125}{11}
Calculate x from x=2\times \frac{57}{11}+1.
x=\frac{125}{11} y=\frac{57}{11} z=\frac{38}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}