Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-y-z+2
Solve x+y+z=2 for x.
-y-z+2-y=1 2\left(-y-z+2\right)+y-z=20
Substitute -y-z+2 for x in the second and third equation.
y=\frac{1}{2}-\frac{1}{2}z z=-\frac{16}{3}-\frac{1}{3}y
Solve these equations for y and z respectively.
z=-\frac{16}{3}-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{2}z\right)
Substitute \frac{1}{2}-\frac{1}{2}z for y in the equation z=-\frac{16}{3}-\frac{1}{3}y.
z=-\frac{33}{5}
Solve z=-\frac{16}{3}-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{2}z\right) for z.
y=\frac{1}{2}-\frac{1}{2}\left(-\frac{33}{5}\right)
Substitute -\frac{33}{5} for z in the equation y=\frac{1}{2}-\frac{1}{2}z.
y=\frac{19}{5}
Calculate y from y=\frac{1}{2}-\frac{1}{2}\left(-\frac{33}{5}\right).
x=-\frac{19}{5}-\left(-\frac{33}{5}\right)+2
Substitute \frac{19}{5} for y and -\frac{33}{5} for z in the equation x=-y-z+2.
x=\frac{24}{5}
Calculate x from x=-\frac{19}{5}-\left(-\frac{33}{5}\right)+2.
x=\frac{24}{5} y=\frac{19}{5} z=-\frac{33}{5}
The system is now solved.