\left\{ \begin{array} { l } { x + y + z = 180 } \\ { y + 3 x + 8 = 180 } \\ { z + 3 x - 8 = 180 } \end{array} \right.
Solve for x, y, z
x=36
y=64
z=80
Share
Copied to clipboard
x=-y-z+180
Solve x+y+z=180 for x.
y+3\left(-y-z+180\right)+8=180 z+3\left(-y-z+180\right)-8=180
Substitute -y-z+180 for x in the second and third equation.
y=-\frac{3}{2}z+184 z=-\frac{3}{2}y+176
Solve these equations for y and z respectively.
z=-\frac{3}{2}\left(-\frac{3}{2}z+184\right)+176
Substitute -\frac{3}{2}z+184 for y in the equation z=-\frac{3}{2}y+176.
z=80
Solve z=-\frac{3}{2}\left(-\frac{3}{2}z+184\right)+176 for z.
y=-\frac{3}{2}\times 80+184
Substitute 80 for z in the equation y=-\frac{3}{2}z+184.
y=64
Calculate y from y=-\frac{3}{2}\times 80+184.
x=-64-80+180
Substitute 64 for y and 80 for z in the equation x=-y-z+180.
x=36
Calculate x from x=-64-80+180.
x=36 y=64 z=80
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}