\left\{ \begin{array} { l } { x + y + z = 12 } \\ { x + 2 y + 5 z = - 23 } \\ { x = 4 y } \end{array} \right.
Solve for x, y, z
x = \frac{332}{19} = 17\frac{9}{19} \approx 17.473684211
y = \frac{83}{19} = 4\frac{7}{19} \approx 4.368421053
z = -\frac{187}{19} = -9\frac{16}{19} \approx -9.842105263
Share
Copied to clipboard
x=4y x+2y+5z=-23 x+y+z=12
Reorder the equations.
4y+2y+5z=-23 4y+y+z=12
Substitute 4y for x in the second and third equation.
y=-\frac{5}{6}z-\frac{23}{6} z=-5y+12
Solve these equations for y and z respectively.
z=-5\left(-\frac{5}{6}z-\frac{23}{6}\right)+12
Substitute -\frac{5}{6}z-\frac{23}{6} for y in the equation z=-5y+12.
z=-\frac{187}{19}
Solve z=-5\left(-\frac{5}{6}z-\frac{23}{6}\right)+12 for z.
y=-\frac{5}{6}\left(-\frac{187}{19}\right)-\frac{23}{6}
Substitute -\frac{187}{19} for z in the equation y=-\frac{5}{6}z-\frac{23}{6}.
y=\frac{83}{19}
Calculate y from y=-\frac{5}{6}\left(-\frac{187}{19}\right)-\frac{23}{6}.
x=4\times \frac{83}{19}
Substitute \frac{83}{19} for y in the equation x=4y.
x=\frac{332}{19}
Calculate x from x=4\times \frac{83}{19}.
x=\frac{332}{19} y=\frac{83}{19} z=-\frac{187}{19}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}