\left\{ \begin{array} { l } { x + y + z = 100 } \\ { 8 x + 5 y + z = 502 } \\ { 8 x = 5 y } \end{array} \right.
Solve for x, y, z
x=30
y=48
z=22
Share
Copied to clipboard
x=-y-z+100
Solve x+y+z=100 for x.
8\left(-y-z+100\right)+5y+z=502 8\left(-y-z+100\right)=5y
Substitute -y-z+100 for x in the second and third equation.
y=-\frac{7}{3}z+\frac{298}{3} z=100-\frac{13}{8}y
Solve these equations for y and z respectively.
z=100-\frac{13}{8}\left(-\frac{7}{3}z+\frac{298}{3}\right)
Substitute -\frac{7}{3}z+\frac{298}{3} for y in the equation z=100-\frac{13}{8}y.
z=22
Solve z=100-\frac{13}{8}\left(-\frac{7}{3}z+\frac{298}{3}\right) for z.
y=-\frac{7}{3}\times 22+\frac{298}{3}
Substitute 22 for z in the equation y=-\frac{7}{3}z+\frac{298}{3}.
y=48
Calculate y from y=-\frac{7}{3}\times 22+\frac{298}{3}.
x=-48-22+100
Substitute 48 for y and 22 for z in the equation x=-y-z+100.
x=30
Calculate x from x=-48-22+100.
x=30 y=48 z=22
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}