\left\{ \begin{array} { l } { x + y + 5 z = 10 } \\ { 2 x + 5 y + 2 z = 20 } \\ { 100 x + 2 y + z = 30 } \end{array} \right.
Solve for x, y, z
x=\frac{500}{2281}\approx 0.219202104
y = \frac{7760}{2281} = 3\frac{917}{2281} \approx 3.402016659
z = \frac{2910}{2281} = 1\frac{629}{2281} \approx 1.275756247
Share
Copied to clipboard
x=-y-5z+10
Solve x+y+5z=10 for x.
2\left(-y-5z+10\right)+5y+2z=20 100\left(-y-5z+10\right)+2y+z=30
Substitute -y-5z+10 for x in the second and third equation.
y=\frac{8}{3}z z=\frac{970}{499}-\frac{98}{499}y
Solve these equations for y and z respectively.
z=\frac{970}{499}-\frac{98}{499}\times \frac{8}{3}z
Substitute \frac{8}{3}z for y in the equation z=\frac{970}{499}-\frac{98}{499}y.
z=\frac{2910}{2281}
Solve z=\frac{970}{499}-\frac{98}{499}\times \frac{8}{3}z for z.
y=\frac{8}{3}\times \frac{2910}{2281}
Substitute \frac{2910}{2281} for z in the equation y=\frac{8}{3}z.
y=\frac{7760}{2281}
Calculate y from y=\frac{8}{3}\times \frac{2910}{2281}.
x=-\frac{7760}{2281}-5\times \frac{2910}{2281}+10
Substitute \frac{7760}{2281} for y and \frac{2910}{2281} for z in the equation x=-y-5z+10.
x=\frac{500}{2281}
Calculate x from x=-\frac{7760}{2281}-5\times \frac{2910}{2281}+10.
x=\frac{500}{2281} y=\frac{7760}{2281} z=\frac{2910}{2281}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}