Skip to main content
Solve for x, y, z
Tick mark Image

Similar Problems from Web Search

Share

x=-y-5z+10
Solve x+y+5z=10 for x.
2\left(-y-5z+10\right)+5y+2z=20 100\left(-y-5z+10\right)+2y+z=30
Substitute -y-5z+10 for x in the second and third equation.
y=\frac{8}{3}z z=\frac{970}{499}-\frac{98}{499}y
Solve these equations for y and z respectively.
z=\frac{970}{499}-\frac{98}{499}\times \frac{8}{3}z
Substitute \frac{8}{3}z for y in the equation z=\frac{970}{499}-\frac{98}{499}y.
z=\frac{2910}{2281}
Solve z=\frac{970}{499}-\frac{98}{499}\times \frac{8}{3}z for z.
y=\frac{8}{3}\times \frac{2910}{2281}
Substitute \frac{2910}{2281} for z in the equation y=\frac{8}{3}z.
y=\frac{7760}{2281}
Calculate y from y=\frac{8}{3}\times \frac{2910}{2281}.
x=-\frac{7760}{2281}-5\times \frac{2910}{2281}+10
Substitute \frac{7760}{2281} for y and \frac{2910}{2281} for z in the equation x=-y-5z+10.
x=\frac{500}{2281}
Calculate x from x=-\frac{7760}{2281}-5\times \frac{2910}{2281}+10.
x=\frac{500}{2281} y=\frac{7760}{2281} z=\frac{2910}{2281}
The system is now solved.