\left\{ \begin{array} { l } { x + x + x = 30 } \\ { x + 2 y = 20 } \\ { y + 4 z = 0 } \end{array} \right.
Solve for x, y, z
x=10
y=5
z = -\frac{5}{4} = -1\frac{1}{4} = -1.25
Share
Copied to clipboard
2x+x=30
Consider the first equation. Combine x and x to get 2x.
3x=30
Combine 2x and x to get 3x.
x=\frac{30}{3}
Divide both sides by 3.
x=10
Divide 30 by 3 to get 10.
10+2y=20
Consider the second equation. Insert the known values of variables into the equation.
2y=20-10
Subtract 10 from both sides.
2y=10
Subtract 10 from 20 to get 10.
y=\frac{10}{2}
Divide both sides by 2.
y=5
Divide 10 by 2 to get 5.
5+4z=0
Consider the third equation. Insert the known values of variables into the equation.
4z=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
z=-\frac{5}{4}
Divide both sides by 4.
x=10 y=5 z=-\frac{5}{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}