\left\{ \begin{array} { l } { x + w y = a } \\ { a - v y = - 1 } \end{array} \right.
Solve for x, y (complex solution)
\left\{\begin{matrix}x=-\frac{w+aw-av}{v}\text{, }y=\frac{a+1}{v}\text{, }&v\neq 0\\x=-1\text{, }y\in \mathrm{C}\text{, }&a=-1\text{ and }v=0\text{ and }w=0\\x\in \mathrm{C}\text{, }y=-\frac{x+1}{w}\text{, }&a=-1\text{ and }v=0\text{ and }w\neq 0\end{matrix}\right.
Solve for x, y
\left\{\begin{matrix}x=-\frac{w+aw-av}{v}\text{, }y=\frac{a+1}{v}\text{, }&v\neq 0\\x=-1\text{, }y\in \mathrm{R}\text{, }&a=-1\text{ and }v=0\text{ and }w=0\\x\in \mathrm{R}\text{, }y=-\frac{x+1}{w}\text{, }&a=-1\text{ and }v=0\text{ and }w\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(-v\right)y+a=-1,wy+x=a
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(-v\right)y+a=-1
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
\left(-v\right)y=-a-1
Subtract a from both sides of the equation.
y=\frac{a+1}{v}
Divide both sides by -v.
w\times \frac{a+1}{v}+x=a
Substitute \frac{1+a}{v} for y in the other equation, wy+x=a.
\frac{w\left(a+1\right)}{v}+x=a
Multiply w times \frac{1+a}{v}.
x=\frac{av-aw-w}{v}
Subtract \frac{w\left(1+a\right)}{v} from both sides of the equation.
y=\frac{a+1}{v},x=\frac{av-aw-w}{v}
The system is now solved.
\left(-v\right)y+a=-1,wy+x=a
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\left(-v\right)y+a=-1
Pick one of the two equations which is more simple to solve for y by isolating y on the left hand side of the equal sign.
\left(-v\right)y=-a-1
Subtract a from both sides of the equation.
y=\frac{a+1}{v}
Divide both sides by -v.
w\times \frac{a+1}{v}+x=a
Substitute \frac{1+a}{v} for y in the other equation, wy+x=a.
\frac{w\left(a+1\right)}{v}+x=a
Multiply w times \frac{1+a}{v}.
x=\frac{av-aw-w}{v}
Subtract \frac{w\left(1+a\right)}{v} from both sides of the equation.
y=\frac{a+1}{v},x=\frac{av-aw-w}{v}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}